
User’s Manual for the Modular Forms Package of

Pari/GP

Henri Cohen

January 12, 2016

1 Introduction

1.1 Trace Formulas

Although the most popular way of doing computations on classical modular
forms is through the use of modular symbols or analogous objects, another
method is to use the Eichler–Selberg trace formula. To use this formula one
needs large tables of class numbers of imaginary quadratic orders, but these
are readily computed thanks to recursions due to Hurwitz and Eichler.

We will always work in Mk(Γ0(N), χ), although other congruence sub-
groups could be considered. To the author’s knowledge, the available general
trace formulas are the following:

1. A formula for Tr(T (n)) acting on Sk(Γ0(N), χ) for any n, coprime to
the level N or not. This formula has been known for at least 40 years,
and the most useful and ready to implement form of this formula is due
to the author, briefly published in XXX (there is an evident misprint
to correct), and restated in other papers such as XXX.

2. A formula for Tr(T (n)) ◦ WQ (WQ Atkin–Lehner operators) acting
on Sk(Γ0(N)), due to Skoruppa and Zagier. This formula allows to
compute the trace of T (n) on the newspace Snew

k (Γ0(N)), but unfor-
tunately has not been worked out for nontrivial χ.

3. Very recently, Booker, Bober, and Lee have found a relation between
the trace of T (n) on Sk(Γ0(N), χ) and the traces on Snew

k (Γ0(M), χ)
for divisors M of N . This formula can be inverted and leads to an
explicit formula for Tr(T (n)) acting on Snew

k (Γ0(N), χ).

1

4. A very surprising and quite nontrivial consequence of the preceding
formula is that the series

∑
n≥1 Tr(T (n))qn where T (n) acts on the

space Sk(Γ0(N), χ) (not the newspace) is a modular form, which allows
to construct the whole space directly.

Thanks to these formulas, one proceeds as follows:
– As a first step, one constructs a trace form T (N,χ) (either on Sk, on

Snew
k , or on the Atkin–Lehner subspaces of Snew

k). The coefficient of q is the
dimension of the space.

– By applying sufficiently many Hecke operators T (n) with n coprime
to N , it is easy to show that we will generate the space, so we can extract
a basis.

– If we are in the newspace or in an Atkin–Lehner subspace, using the
Hecke algebra we split the space into Q-orbits, so that we obtain explicitly
the canonical basis of normalized eigenforms.

1.2 Eisenstein Series

In addition to the cusp forms, we also have spaces of Eisenstein series. In
the present implementation, these are treated separately, but in the future
they will be merged with the cusp forms.

Contrary to most cusp forms, the coefficients of these Eisenstein series
are completely explicit, but the exact form of the basis is not readily found
in the literature.

Definition 1.1 1. For any characters χ1 and χ2, we set

σk(χ1, χ2;n) =
∑

d|n, d>0

χ1(d)χ2(n/d)dk .

2. If χ1 and χ2 are primitive characters and k ≥ 1 we set

Ek(χ1, χ2) = δχ2

L(χ1, 1− k)

2
+
∑
n≥1

σk−1(χ1, χ2;n)qn ,

where δχ2 = 1 if χ2 is the trivial character, and 0 otherwise.

3. If χ is a character we denote by f(χ) its conductor and by χf the
primitive character modulo f(χ) equivalent to χ.

The theorem is as follows:

2

Theorem 1.2 If χ(−1) = (−1)k (otherwise the space is zero), a basis for
the space of Eisenstein series in Mk(Γ0(N), χ) is given as follows:

1. If k ≥ 3, the forms Ek(χ1, (χχ
−1
1)f)(dτ), where χ1 runs through all

primitive characters and d positive integers satisfying the condition
f(χ1)f(χχ−11)d | N .

2. If k = 2, the same forms as in (1) except if χ is the trivial character, in
which case one must first exclude the forms for which χ1 is trivial, but
second add the forms E2(dτ)− pE2(pdτ) for all primes p and positive
integers d such that pd | N , where as usual E2 = 1−24

∑
n≥1 σ1(n)qn.

3. If k = 1 (so that χ is odd), the same forms as in (1) except that one
restricts to characters χ1 which are even.

1.3 Modular Forms of Weight 1

It is well-known that it is difficult to compute spaces of modular forms of
weight 1: one cannot use modular symbols nor trace formulas. One can use
theta series, but the most common methods rely on dividing two modular
forms of higher weights k and k−1. The main problem is of course to decide
when a modular form is divisible by another.

Several methods have been used to deal with this problem. The present
implementation uses what appears to be the most efficient, due to George
Schaeffer, called Hecke stability. It is based on the following theorem, which
is a special case of the theorem proved by Schaeffer.

Theorem 1.3 Denote by M∗1 (Γ0(N), χ) the (infinite-dimensional) vector
space of meromorphic modular functions of weight 1, level N , and character
χ, and let V be a finite-dimensional subspace. If there exists a prime ` - N
such that V is stable under T (`), then V ⊂M1(Γ0(N), χ).

Corollary 1.4 Let E be a nonempty finite subset of M1(Γ0(N), χ) \ {0},
and for each E ∈ E, denote by DE the division-by-E map from S2(Γ0(N))
to M∗1 (Γ0(N), χ) sending f to f/E. Then if ` - N is a prime, the maximal
T (`)-stable subset VE,` of VE =

⋂
E∈E Im(DE) satisfies

S1(Γ0(N), χ) ⊂ VE,` ⊂M1(Γ0(N), χ) .

To transform this into an algorithm, we first need to compute the maxi-
mal T (`) stable subset, and second we need to compute the specific subspace
S1(Γ0(N), χ).

3

To compute the maximal stable subset we proceed as follows. Let r be
large, let g = dim(S2(Γ0(N))), and for each E ∈ E let AE be the r×g matrix
whose columns are the coefficients of the Fourier expansion of fi/E for a fixed
basis (fi)1≤i≤g. Note that it is essential to include the constant terms (often
0) since some Eisenstein series have 0 constant term. The image of DE is
equal to the image of AE , so VE is the intersection of these images, which
is the image of a matrix A easily computed using Algorithm XXX. On the
other hand, let M be the matrix of T (`) acting on the Fourier expansions
at infinity (once again not forgetting the constant terms). The maximal
T (`)-stable subset of VE expressed on the columns of A is the set of column
vectors X such that MAX = AY for some column vector Y . Multiplying
on the left by the left inverse of A (A−1A = I) gives A−1MAX = Y , hence
MAX = AA−1MAX, i.e., VE is the kernel of the matrix (I −AA−1)MA.

2 Internal and External Representations

2.1 Representation of Dirichlet Characters

In the present implementation, we have decided to leave to the user many
possible choices for representing Dirichlet characters when working inside
the spaces Sk for k ≥ 2. However, when working with noncusp forms or
in M1, it is preferable to use a slightly sophisticated representation due to
B. Conrey. This will certainly change in the future.

Whatever representation is used, it is essential to be able to know: the
values of the character (evidently), its modulus N , and its conductor f . It is
also sometimes useful, but not essential, to know its order ord. The allowed
representations are as follows:

1. A pair [N, [χ(1), . . . , χ(f)]].

2. A triple [N, f, C], where C is a closure.

3. A Conrey representation [N,m, ord, [tech]], where tech is a vector of
technical data.

4. A triple [N, ord, [chilog(1), . . . , chilog(f)]], where the chilog(n)s are in-

tegers such that χ(n) = ζ
chilog(n)
ord if n is coprime to N , and 0 otherwise.

5. An integer D, representing the Kronecker symbol

(
D

n

)
.

In the future, we will certainly include or replace by the Conrey repre-
sentations implemented by P. Molin and/or K. Belabas.

4

2.2 Representation of Modular Forms

The representation of a classical modular form by its Fourier expansion at
infinity has many disadvantages, but because of the use of the trace formula
we are almost compelled to use it (this is not the case with modular symbols).
Since evidently the number of necessary (or desired) Fourier coefficients is
not known in advance, it is reasonable to use closures. We have two choices:
either a closure n 7→ a(n) giving the nth Fourier coefficient, or a closure
n 7→ [a(0), . . . , a(n− 1)] giving the first n. The latter would have a number
of advantages, but it has a big disadvantage when computing the action of
Hecke operators, and all attempts to use it have resulted in slowing down the
programs by a factor of at least 5. Thus a modular form will be represented
by a closure n 7→ a(n) for n ≥ 0.

3 Available Functions on Characters

There are three kinds of functions on characters: general functions available
for all types, functions to convert from one type to another, and specific
functions on Conrey characters.

• General Functions.

charmodulus(CHI): returns the modulus N .
charconductor(CHI): returns the conductor f . (to test if a character is

primitive, test if f == N).
charorder(CHI): returns the order of χ.
chargalois(N,parity=0,flagord=0): returns a list of representatives

of the Galois orbits of elements coprime to N , to be used in conjunction
with conreycreate(N,.). If parity is 1 or −1, give only those with that
parity, and if flagord is set only those whose order is less than or equal to
flagord.

charinv(CHI): inverse of the character χ.
chartoprimitive(CHI): primitive character modulo f equivalent to χ.
charisquadratic(CHI): true if character is quadratic (including the

trivial) false if not.
chareval(CHI,n,N=0): compute χ(n), considering χ as a character

modulo N . Warning: N is not necessarily the modulus of χ: set it to
0 (default) if you want that.

charparity(CHI): returns χ(−1).
charistrivial(CHI): returns 1 if χ is the trivial character modulo N .
chartrivial(N): creates the trivial character modulo N in some format.

5

charvec(CHI): returns the vector [χ(1), . . . , χ(N)], where N is the mod-
ulus of χ.

• Character conversions.
chartype(CHI): returns the type (from 1 to 5 as above) of the character.
charfromconrey(T): given a character in Conrey format, convert it to

type T (from 1 to 5 as above).
chartoconrey(CHI): convert to Conrey format.
chartohecke(CHI): convert to Hecke (type 4) format.
charhecketoconrey(CHI): convert from Hecke to Conrey format. Used

internally, special case of chartoconrey.

• Functions specific to Conrey format.

conreycreate(N,m): create the mth Dirichlet character modulo N in
the Conrey numbering, together with all necessary technical data. Thus, if
for instance you want to range over all characters modulo N , you use this
function with all m with 0 ≤ m < N such that gcd(m,N) = 1.

conreyclos(N,m), conreytoclos(CHI): create the closure correspond-
ing to the mth Conrey character modulo N , or to the already created Conrey
character CHI.

conreyeval(CHI,n): evaluate the Conrey character χ at n. Special case
of chareval(CHI,n).

conreylog(CHI,n): Conrey logarithm of χ at n, i.e., a positive integer
L such that χ(n) = exp(2πiL/ord), where ord is the order of the character,
−1 if gcd(n,N) > 1.

conreyvec(CHI): vector of χ(n) for 1 ≤ n ≤ N , with N modulus of χ.
conreyveclog(CHI): vector of Conrey logarithms of n for 1 ≤ n ≤ N ,

with N modulus of χ.
conreyinduce(CHI,M): Conrey character moduloM multiple of the mod-

ulus N equivalent to χ.
conreyinducesimple(CHI,M): Conrey number of conreyinduce(CHI,M).
conreymul(CHI1,CHI2): product of the two Conrey characters.
conreydiv(CHI1,CHI2): quotient of the two Conrey characters.
conreyinv(CHI): inverse (conjugate) of the Conrey character χ.
conreymulprimitive, conreydivprimitive: same as conreymul and

conreydiv except that they return the primitive character equivalent to the
product or quotient.

conreyconductor(CHI): special case of charconductor.
conreytoprimitive(CHI): special case of chartoprimitive.

6

4 Functions on Modular Forms

4.1 Functions on Eisenstein Series of Weight k ≥ 1

We have two types of Eisenstein series with character: the type explained
above

Ek(χ1, χ2) = δχ2

L(χ1, 1− k)

2
+
∑
n≥1

σk(χ1, χ2;n)qn ,

and the special case Ek(χ) := Ek(χ, 1), where 1 is the trivial character
modulo 1.

mfeisen1clos(k,CHI,flinv=0): closure giving the coefficients of Ek(χ, 1),
or of Ek(χ, 1) if flinv is set.

mfeisen1ser(k,CHI,lim=precdl): series expansion up to lim.
mfeisen2clos(k,CHI1,CHI2: closure giving the coefficients of Ek(χ1, χ2).
mfeisen2ser(k,CHI1,CHI2,lim=precdl): series expansion up to lim.
mfeisenbasisclos(N,k,CHI): vector of closures of a basis of Eisenstein

series for Mk(Γ0(N), χ).
mfeisenbasisvec(N,k,CHI,lim=precdl): vector expansions up to lim.
mfeisenbasisser(N,k,CHI,lim=precdl): series expansions up to lim.
mfeisenbasisdim(N,k,CHI): dimension of the space of Eisenstein series.
mfeisencoeffs(mf,F): coefficients of closure or series F on the basis

formed by the union of, first, the Eisenstein series given by mfeisenbasisclos,
and second, the basis of cusp forms given in mf as a result of some mfinit

call.
mfE4clos(), mfE6clos(), mfEkclos(k): closure corresponding to the

classical Eisenstein series E4, E6, Ek.
mfdeltaclos(): closure corresponding to the classical Ramanujan delta

function ∆.
mfelljclos(): closure corresponding to the classical elliptic j-invariant

(gives q ∗ j instead of j). Warning: this is given for completeness, but if you
want the q-expansion of j, use series directly, not closures.

4.2 Utility Functions For Modular Form Computations

• Initializations, conversions, and closure conputations.
mktab(L): constructs a table of class numbers up to L. Calls mktabh(L),

so very fast once the latter is constructed.
mktabh(L): constructs a table of Hurwitz class numbers up to L.
mycl(D): only for debugging, class number for D < −4.

7

myhcl(D): only for debugging, 6 times Hurwitz class number H(−D),
D < 0.

gcdinfty(a,b): gcd(a, b∞) (a and b small).
primdiv(N): list as a vecsmall the primitive divisors Q of N , i.e., such

that gcd(Q,N/Q) = 1.
mfclostovec(F,lim=precdl), mfclostocol(F,lim=precdl): F being

a closure, vector of F (n) for 0 ≤ n < lim.
mfclostoser(F,lim=precdl): F being a closure, series of F (n) up to

precision lim, in the variable q.
mfvectoconj(V,ind=1): transform a vector of polmods V into a vector

of complex by choosing the ind-th root of the common polynomial modulus.
mfclostoconj(F,lim=precdl,ind=1): same as mfvectoconj(mfclostovec(F,lim),ind).
mfclosembed(F,ind=1): embed a closure F into a closure with complex

coeffs by choosing the ind-th root of the polynomail defining Q(F).
mfclosadd(F, G), mfclossub(F, G), mfclosmul(F, G), mfclosinv(F),

mfclosdiv(F, G), mfclosreverse(F): corresponding operations on closures.
Warning: mfclosdiv and mfclosreverse are given for completeness, but
are very slow. Usually, you will want to do the operations directly on series,
not on closures.

mfclosscalmul(F,la): closure n 7→ λF (n).
mfcloslinear(vF,vla): closure n 7→

∑
λiFi(n).

mfclosval(F,flag=0): valuation of the series corresponding to the clo-
sure F. If flag is set, return 100 if F seems to be the zero closure, otherwise
error.
• Specific Modular Form Operators.
mfheckevec(N,k,CHI=[1,[1]],V,n,lim=precdl): V being a vector,

return the vector T (n)(V) of length lim (not always possible if V too short).
mfheckeser(N,k,CHI=[1,[1]],S,n): S being a series, return T (n)(S)

as a shorter series.
mfheckeclos(N,k,CHI=[1,[1]],F,n): F being a closure, return the

closure T (n)(F).
mfbdclos(F,d): F being a closure, return the closure B(d)(F), where

B(d) is the diamond operator τ 7→ dτ .
mftwist(F,D): twist of the closure F by the quadratic character D.

4.3 Main Modular Form Computations

• Auxilliary functions.
mfcusps(N): list of cusps of Γ0(N).
mfsturm(N,k): Sturm bound for Sk(Γ0(N)).

8

mfdim(N,k,CHI=[1,[1]],flag=0): dimension of Sk(Γ0(N), χ), or of
Mk(Γ0(N), χ) if flag is set.

mftrace(N,k,CHI=[1,[1]],n,flag=0): trace of T (n) on Sk, some ver-
ifications done if flag is set.

mftracevec(N,k,CHI=[1,[1]],lim=precdl): vector of traces of T (n)
on Sk for 0 ≤ n ≤ lim.

mftraceser(N,k,CHI=[1,[1]],lim=precdl): trace series on Sk(Γ0(N), χ).
mftraceclos(N,k,CHI=[1,[1]]): trace form on Sk(Γ0(N), χ) as a clo-

sure.
mfnewdim(N,k,CHI=[1,[1]]): dimension of Snew

k (Γ0(N), χ).
mfnewALdim(N,k,Q,flag=0): If Q > 0, dimension of Atkin–Lehner Q-

space in Snew
k (Γ0(N), χ). If Q = 0, sum of the dimensions (same but slower

than mfnewdim), if Q < 0, all individual dimensions in the order of primdiv.
mfnewtrace(N,k,CHI=[1,[1]],n), mfnewtracevec(N,k,CHI=[1,[1]],Q=0,lim=precdl),

mfnewtraceser(N,k,CHI=[1,[1]],Q=0,lim=precdl), mfnewtraceclos(N,k,CHI=[1,[1]],Q=0):
same as the corresponding ones, but for Snew

k , or Snew,Q
k if Q is nonzero.

• Main Functions.
mfinit(N,k,CHI=[1,[1]],code=MFNEW,split=SPRED): fundamental ini-

tialization function for working in modular form spaces. The meaning of
the flags are as follows: if code=MFNEW (0), newspace, code=MFFULL
(-1), fullspace computed directly, code=MFOLD (-2), oldspace computed di-
rectly, code=MFFULLN (-3) fullspace computed from newspace, code=MFATK
(-4), obtain newspace from Atkin-Lehner subspaces, but implemented only
for trivial CHI, code=MFOLDN (-5), oldspace computed from newspace.
Also, code can be a strictly positive Q, interpreted as a primitive divisor
of N (so we must have Q|N and gcd(Q,N/Q) = 1), in which case only the
Q-Atkin–Lehner space is given. For the moment the latter is implemented
only for trivial CHI.

The flag split is used inside the newspace (code=MFNEW, MFATK, or
Q > 0 primitive divisor). split=NONSP: do not split the space, split=SPLIT:
split but do not try to simplify the defining polynomials (may be expensive),
split=SPRED: split and simplify using polredbest, split=SPRAT: split but
keep only the rational eigenspaces. Warning: in this case, the dimension
which is equal to mf[2] is still the full dimension, not the number of rational
eigenspaces. This can induce wrong results on other functions.

If fullspace, oldspace, or newspace and nonsplit, the result is a 4-component
vector mf, where mf[1]=[N,k,CHI,code], mf[2] is a vector of closures giving
a basis for the space (so the dimension of the space is length(mf[2])),
mf[3] contains the corresponding indices: either j for T (j)(tf) if newspace,

9

[M, j, d] for B(d)T (j)(tfM) if fullspace or oldspace, or [Q, j] for Atkin news-
pace. mf[4] contains the matrix M of first coefficients of basis, of maximal
rank and minimum number of rows.

If split, the result has two additional components: mf[5] is the vector of
vectors of coefficients on the basis of closures mf[2] of the eigenspaces, as
polmods in the variable x, so length(mf[5]) is the number of eigenspaces,
and mf[6] is the vector of the corresponding defining polynomials of the
polmods, so length(mf[6]) is also the number of eigenspaces, and the de-
grees of the polynomials are the dimensions.

mfgaldims(mf): vector of dimensions of the Galois orbits if split, of the
whole space if not.

mfgalpols(mf): vector of polynomials defining the Galois orbits if split,
empty vector if not.

mfbasisvec(mf,lim=precdl,flag=0): vector of vectors of length lim
giving the eigenform coefficients if split, the basis coefficients if not. If flag
is set and not split, give the forms in echelon form.

mfbasisser(mf,lim=precdl,flag=0): vector of series of length lim giv-
ing the eigenform coefficients if split, the basis coefficients if not. If flag is
set and not split, give the forms in echelon form.

mfbasisclos(mf): if split, vector of closures giving the eigenforms, oth-
erwise vector of closures giving the basis mf[2].

mftruesturm(mf): optimal Sturm bound for space mf, usually quite
smaller than Sturm bound.

mfmkmatcoeffs(mf) BAD NAME: square matrix with complex entries
of coefficients of the eigenforms (all Galois embeddings) on the basis mf[2].

mfcoeffs(mf,F): give the coefficients of the closure F on the space mf,
error of F does not belong to the space.

mfnewsplit(mf,flag=1,coderat=0): used only for debugging. Split a
newspace or an Atkin–Lehner subspace. If flag=1, reduce the polynomials
using polredbest, and if coderat is set, keep only the rational eigenspaces.
The result is a two-component vector [mf5,mf6], where mf5 contains the
vector of vectors of coefficients on mf[2] of the eigenspaces, as polmods in
the variable x, and mf6 the vector of polynomials defining the Galois orbits.

mfvectoser(mf,v,lim=precdl) BAD NAME: linear combination with
coefficients v of the basis mf[2] as a series to precision lim.

mfmathecke(mf,n): Matrix of T (n) in the space mf.
mfcloseval0(N,k,CHI=[1,[1]],F,vtau): compute the numerical value

of the modular form F given as a closure for the complex number vtau, or the
vector of complex numbers vtau in H. k must be the weight. N is optional,
but if set to 1 assumes that F is of level 1 which considerably improves

10

the algorithm. For now, the algorithm performs very badly if vtau (or some
element of vtau if it is a vector) is close to the imaginary axis, except if N=1.
Note that the execution time increases only moderately with the length of
vtau, so whenever possible, use the vector form if several values must be
computed for the same modular form (also exists a bitprec version).

mfcloseval(mf,F,vtau): same as mfcloseval0 but N, k, CHI are given
by mf (also exists a bitprec version).

mfatkin(mf,Q): Atkin–Lehner eigenvalues of the eigenforms for the prim-
itive divisor Q. Only for the split newspace, and only for quadratic charac-
ters defined modulo N/Q. The computation is done numerically if Q is not
a prime, so can be slow. It is advised to use the lowest possible accuracy
(or bitprec accuracy) (also exists a bitprec version).

mfmatatkin(mf,Q): Matrix of the Atkin–Lehner operator WQ on the
basis mf[2]. Implemented only for the newspace and real characters defined
modulo N/Q. Note that this function is useless when Q > 0 since we are
already in the Atkin–Lehner space, but it will return a result (also exists a
bitprec version).

Warning 1: the result is of the form [A,M], where A is either 1 or Q,
and M is a matrix with rational entries. If A = 1 (which will always be
the case in even weight), the Atkin–Lehner matrix is M , but if A = Q, the
Atkin–Lehner matrix is M/

√
(Q).

Warning 2: In low accuracy the result may be false since we do a
rational approximation.

mfatkinclos(mf,Q,F,ATK): give as closure F |WQ. ATK, if present, is
the result of mfmatatkin(mf,Q) (also exists a bitprec version).

mfnewdec(mf,F): mf being the FULL (not new) space, returns a vector
of 3-component vectors [M,d,G], where f(χ) |M | N , d | N/M , and G is a
closure in Snew

k (Γ0(M), χ), such that F is equal to the sum of the B(d)(G)
for all these 3-component vectors.

mfnewlevel(mf,F): smallest level dividing N on which the modular form
represented by the closure F is defined.

mfnewdimq1(N,k,CHI=[1,[1]]): number of rational eigenforms in Snew
k .

mfnewALdimq1(N,k,Q): if Q > 0, number of rational eigenforms in the
Atkin–Lehner newspace for Q, if Q = 0 total number (same as mfnewdimq1),
if Q < 0 vecsmall of number of rational eigenforms in every Atkin–Lehner
newspace, in the same order as that given by primdiv.

mfcuspexpansion(mf,F,cusp): cusp being an element of P1(Q) in the
form ∞ or a/c with c | N . outputs the closure giving the Fourier expansion
at that cusp. For now, only for gcd(c,N/c) = 1, and the variable q is
in fact exp(2πiτ/c) (and not exp(2πiτ)), since the width of the cusp is

11

(N/c)/ gcd(c,N/c). To see the expansion itself, use mfclostoser on the
result.

4.4 Applications

mfsearch(nklim,vmod,flag=0,lim=0,lpr=0): search for a modular form
given a few initial coefficients, ONLY normalized newforms with integer co-
efficients and trivial character, although it would be trivial to add quadratic
characters.

vmod is either a list of the prime index coefficients [a2, a3, a5, ...ap]; one
can omit ap in the list by setting it to a type not t INT or t FRAC, the
shortest is probably to set it to I. Or vmod can be a list of pairs [..., [p, ap], ...].

nklim governs the limits of the search: if it is a t INT, search for N ·k ≤
2 · nklim; if it is a vector of t INT [N2, N4, N6, ...], search for N ≤ N2 for
k = 2, N ≤ N4 for k = 4, etc...; if it is a vector of pairs [[k1, N1], [k2, N2], ...]
search with N ≤ N1 for k = k1, N ≤ N2 for k = k2, etc...

The meaning of flag is as follows: if flag = 0, search for exact match;
if flag = 1: search for match with ap modulo p, if flag = m with m ≥ 2,
search for match modulo fixed m for all p.

lim is the length of the series given in the result, if lpr is set the results
are printed as they are found, since the search can be very long.

The result is a vector of 3-component vectors [N, k, se], where N is the
level, k the weight, and se the series to lim terms.

mfsearchAL(nklim,vmod,flag=0,lim=0,lpr=0): same as mfsearch, but
loop through the Atkin–Lehner spaces instead of all the newspaces, usually
faster. The results are now 4-component vectors [N, k,Q, se], where Q is
the Atkin–Lehner divisor.

mflfuncreate(mf), lfunmodform(mf): vector of lfuncreate s of all the
eigenforms, of length the dimension of the space (all the newspace or Atkin–
Lehner space), so each Galois orbit of dimension d has d corresponding
lfuncreate s, one for each embedding.

mffromell(E): E being an elliptic curve defined over Q given by an
integral model by ellinit, returns a 3-component vector [mf,F,coeffs],
where F is the closure associated to the newform corresponding to E by
modularity, mf is the split newspace to which F belongs, and coeffs are
the coefficients of F on the basis mf[2] of closures. Note that coeffs must
be one of the coefficients given by mf[5], and this is checked.

12

4.5 Modular Forms of Weight 1

The functions defining the spaces of Eisenstein series also work in weight 1,
so we only need cusp forms.

mfwt1basis(N,CHI,lim=0): Basis of the space S1(Γ0(N), χ) as series
using George Schaeffer’s Hecke stability. lim is the order of q-expansions
with which the program will compute, but the output is to a much higher
series precision.

mfwt1basisall(N,lim=0): Union of bases of spaces S1(Γ0(N), χ) for a
given N . The result is a vector indexed by the Galois conjugacy classes of
χ (see chargalois), and each component is [CHI,basis], where CHI is the
Dirichlet character in Conrey numbering, and basis is the basis given by
mfwt1basis. The degree of the polmods defining the basis is equal to the
cardinality of the Galois conjugacy class of χ and equal to Euler’s φ function
applied to the order of χ.

mfwt1dim(N): dimension of S1(Γ1(N)).
mfwt1newdim(N): dimension of Snew

1 (Γ1(N)).

13

