
The PARI Jupyter kernel

Jeroen Demeyer

Universiteit Gent
Université Paris-Sud (Orsay)



History of IPython + Jupyter

I Python comes with a very simple command line interface.
I IPython provides a much better command line for Python:

history, TAB-completion, debugging...
I A separate project, not part of Python.

I Sage uses IPython for its command-line interface.
I Much more recently, IPython developed a web-based graphical

interface.
I Inspired by (but independent from) SageNB, a web interface

for running Sage developed as part of Sage.

I Last summer, IPython split off the language-independent
parts in a new project called Jupyter.



The PARI Jupyter kernel

I A Jupyter kernel is what actually executes the commands of a
notebook user. It communicates with the notebook server
using ØMQ.

I There exist currently ≈ 50 different kernels for Jupyter.

I One can easily get started writing Jupyter kernels using a
wrapper kernel, which reuses IPython’s implementation: it
suffices to define just a few methods to have a complete
working kernel.

I The whole PARI Jupyter kernel is a few hundred lines of code.



Getting it

I From Sage: sage -i pari jupyter

I https://github.com/jdemeyer/pari jupyter

I Needs git version of Cython and PARI.



Features

I Support all language features of GP.
I TAB-completion like in GP.

I Not part of PARI library ⇒ requires experimental changes to
the PARI sources.

I History and timer.

I Short help using shift-TAB.

TODO:

I Syntax highlighting.

I Long help in the browser.

I Break loop / debugger.
I Plotting.

I Not part of PARI library.



Why is this so easy?

Cython:
I A language which is the “union” of Python and C: It makes it

easy to write Python code calling a C library.
I Like GP2C, Cython generates C code.

PARI:
I Parsing and executing GP code is trivial using calls to the

PARI library.
I It did require a small patch to the PARI sources to read

multi-line input from a char* instead of a file.

Jupyter:

I Once you manage to find the right documentation, writing
wrapper kernels is easy. There is a toy implementation in the
jupyter client documentation: an echo kernel which just
echoes all input.


