Giac/Xcas and Pari/GP

B. Parisse

University of Grenoble

January, 2016
Outline

1. Giac/Xcas short presentation
2. Pari/GP interaction
3. Optimized algorithms in Giac
Giac vs Xcas

- Giac/Xcas is a **general purpose** symbolic algebra software: \(\sin(x) \) is left as is, not converted to a series.
- Giac is an open-source C++ library (GPL3). It can optionally be linked to libraries like NTL, Pari, GSL, Lapack.
- Xcas is the “native” GUI interface, icas is the commandline interface, both provide access to PARI functions (in other words, Xcas is to Giac what PARI is to GP)
- Xcas is also available in your browser (w/o PARI)

 www-fourier.ujf-grenoble.fr/~parisse/xcas.html

 Works everywhere (smartphone, tablet) without install, once downloaded, no server/Internet required, computations are done locally. Performance penalty 2 to 7.
Interfaces

- Giac has interfaces for Java (JNI), Python (giacpy) and Javascript (compiled by emscripten)
- Giac is used by projects like Geogebra, the HP Prime calculator, ported to the TI nspire calculator, and used by some apps (Xcas Pad, PocketCAS, CAS Calc P11),
- public SVN access via Geogebra

 dev.geogebra.org/trac/browser/trunk/geogebra/giac/

- The javascript version can be used to build interactive HTML output from \LaTeX source files with the hevea compiler. Available from the share directory of the giac archive or

 www-fourier.ujf-grenoble.fr/~parisse/emgiac.tgz
Implicit calls of PARI inside Giac

- Ducos multivariate resultant algorithm
- Approx. univariate factorization for large degree and coefficients, for example katsura8 rational univariate representation
- Univariate factorization if there are many modular factors that recombine over \(\mathbb{Z} \) and NTL is not available
- Number field factorization and computation of galois conjugates
- Integer primality certification,
- Integer factorization if the number has ECM-range factors and is too large for giac own quadratic sieve implementations.
Explicit calls of PARI inside Giac

- `pari()` exports all PARI commandnames like Giac/Xcas user commands.
- if a commandname is the same as a native Giac command, add a `pari_` prefix
- C++ converters `gen2GEN` and `GEN2gen` (`pari.cc` source file)
Limitations of PARI/GP inside Giac

- Some of these limitations might be removed with the help of PARI experts!
- Mutex protection: only one thread can access to PARI at the same time
- Memory: PARI stack initialization is done once. The stack can not be increased from Giac with `allocatemem` (segfault). Default 64M, might be overriden at initialization by `export PARI_SIZE=`
- Some objects (e.g. multivariate polynomials) are converted using strings (inefficient, problems with variable ordering)
- I have compiled a javascript version of `libpari.a`, www-fourier.ujf-grenoble.fr/~parisse/parixcas.html but there are many bugs... Working `matdet`, `pari_factor`, `expm1`... Not working `lngamma`, `fibonacci`...
Multivariate polynomials in Giac

- Multivariate polynomials are represented as sparse, distributed (unlike recursive in PARI/GP).

- Fast multiplication: \(n := 20; \ f := (1+x+y+z+t)^n + 1; \)
 \[\text{normal} \left(g := f \times (f+1) \right); \text{giac 0.66s / gp 7.4s} \]

- Fast GCD modular algorithm for coefficients in \(\mathbb{Z} \), also available for coefficients in algebraic extensions of \(\mathbb{Q} \)

- Fast multivariate factorization (speed comparable to recent versions of Maple) \(\text{factor}(g) \text{ giac 6.7s} \)

- Fast Gröbner basis f4 algorithm (revlex order and double revlex for elimination), fast rational univariate representation. Most of the time (much) faster than Singular (e.g. cyclic9 5mn, cyclic10 14h), over \(\mathbb{Q} \) the modular algorithm speed is comparable to magma or mgb.
Linear algebra in Giac

- Fast system solving with coefficients in \mathbb{Z}
- Fast determinant, characteristic polynomial and inverse of matrices with integer coefficients (probabilistic or deterministic).

```plaintext
n:=500; a:=ranm(n,n,10);
time(det(a)) giac 0.3s, PARI 16.3s
```

- Is there interest in calling Giac from PARI for these kind of algorithms?