Atelier PARIS 2016

A Number Fields Database

Dr. Eric Driver

Introduction

- NumberFields@Home is a volunteer distributed computing project based at the Arizona State University Math Department.
 - http://numberfields.asu.edu/NumberFields
- Uses BOINC for the distributed computing.
- Uses PARI/GP for the number field computations.
- It is being used to help construct a number field database:
 - NumberFields@home is primarily concerned with degree 10 fields.
 - The number field database contains fields of all degrees.

The Number Fields Database

- http://hobbes.la.asu.edu/NFDB/
- John W. Jones and David P. Roberts, A database of number fields, LMS J. Comput. Math. 17 (1) (2014) 595–618

Degree 2	^r 1	r_2
D 0100	rd(K)	grd(K)
Galois T-num.	Restricted to ▼	h
{ram. primes}	P _{min}	p _{max}
p_1	c ₁	
p_2	c ₂	
p_3	c ₃	
p_4	c ₄	
p_5	c ₅	
Only listed primes ca	n ramify	
Sort order: 1 deg ▼	2 grd(K) ▼	3 Gal ▼
deg ▼	grd(K) ▼	Gai
Max fields shown per page: 100	Clear Form	Search

NUMBER FIELDS @ HOME

NumberFields@Home Description

- •Focuses on imprimitive decic (degree 10) number fields having a quadratic subfield.
 - -Imprimitive fields having a quintic subfield are inherently easier and don't require a distributed computation.
 - —Primitive fields are harder and have not been attempted yet.
- The project has two primary objectives:
 - Minimum discriminant decic fields with bound 1,2E11.
 - 2. Decic fields unramified outside a set of primes S.
 - Completed single primes up to p=47.
 - Completed prime pairs {2,3}, {3,7}, {3,11}, {7,11}.
 - Currently processing S={2,5}.

A Few Words About BOINC

- BOINC = Berkeley Open Infrastructure for Network Computing
- Open source code allows anyone with a computer and IP address to create a work server.
- Famous Distributed Computing Projects:
 - GIMPS: Great Internet Mersenne Prime Search
 - SETI: Search for Extra Terrestrial Intelligence
- NumberFields@home current stats:
 - > 5000 users
 - > 19000 host computers
 - > 12 TFLOPS (equivalent to a 6000 core super computer)
 - > 2400 years of compute time (summed over all hosts)

Additions or Changes to PARI/GP?

- I was asked if there were any additions/changes to PARI/GP that could benefit the number fields project.
 - I have Hunter and Martinet subroutines for doing lower degree searches. May not be relevant given the existence of multiple databases.
 - I have code for higher degree searches (up to 10), but due to computational complexity might be impractical.
 - I have Hunter/Martinet code for targeting specific ramification.
 Again, most anything that one would want can be found in a database, so may not be useful.

Questions?

NUMBER FIELDS @ HOME