L-functions in PARI/GP

Karim Belabas (with Bill Allombert, Henri Cohen, Pascal Molin)

First part: Theory

L and Λ -functions (1/3)

Let $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2}\Gamma(s/2)$, where Γ is Euler's gamma function; given a d-tuple $A = [\alpha_1, \ldots, \alpha_d] \in \mathbb{C}^d$, let $\gamma_A := \prod_{\alpha \in A} \Gamma_R(s + \alpha)$

Given

- \checkmark a sequence $a = (a_n)_{n \ge 1}$ of complex numbers such that $a_1 = 1$,
- \checkmark a positive *conductor* $N \in \mathbb{Z}_{>0}$,
- \checkmark a gamma factor γ_A as above,

we consider the Dirichlet series

$$L(a,s) = \sum_{n \ge 1} a_n n^{-s}$$

and the associated completed function

$$\Lambda_{N,A}(a,s) = N^{s/2} \cdot \gamma_A(s) \cdot L(a,s).$$

L and Λ -functions (2/3)

A weak *L*-function is a Dirichlet series $L(s) = \sum_{n \ge 1} a_n n^{-s}$ such that

- The coefficients $a_n = O_{\varepsilon}(n^{C+\varepsilon})$ have polynomial growth. Equivalently, L(s) converges absolutely in some right half-plane ℜ(s) > C + 1.
- The function L(s) has a meromorphic continuation to the whole complex plane with finitely many poles.

This becomes an *L*-function if it satisfies a functional equation: there exist a "dual" sequence a^* defining a weak *L*-function $L(a^*, s)$, an integer k, and completed functions

$$\Lambda(a,s) = N^{s/2} \gamma_A(s) \cdot L(a,s),$$

$$\Lambda(a^*, s) = N^{s/2} \gamma_A(s) \cdot L(a^*, s),$$

such that $\Lambda(a,k-s) = \Lambda(a^*,s)$ for all regular points.

L and Λ -functions (3/3)

In number theory, additional constraints arise

- \checkmark $a^* = \varepsilon \cdot \overline{a}$ for some *root number* ε of modulus 1; often, $\varepsilon = \pm 1$;
- If the complex coeffients a live in the ring of integer of some fixed number field, often in \mathbb{Z} or a cyclotomic ring $\mathbb{Z}[\zeta]$;
- The growth exponent such that $a_n = O_{\varepsilon}(n^{C+\varepsilon})$ can be taken as C = (k-1)/2 if L is entire (Ramanujan-Petersson), and C = k 1 otherwise;
- the *L*-function satisfies an Euler product $L(s) = \prod_{p \text{ prime}} L_p(s)$, where the local factor $L_p(s)$ is a rational function in p^{-s} ;
- \checkmark the α_i are integers, often in $\{0,1\}$.

The current PARI implementation assumes that $a^* = \varepsilon \cdot \overline{a}$ and chooses C as above; these restrictions are being removed.

Θ -functions

To an L-function, we associate a Theta function via Mellin inversion: for positive real t > 0, we let

$$\theta(a,t) := \frac{1}{2\pi i} \int_{\Re(s)=c} t^{-s} \Lambda(s) \, ds$$

where c is any positive real number c > C + 1 such that $c + \Re(a) > 0$ for all $a \in A$. In fact, we have

$$\theta(a,t) = \sum_{n \ge 1} a_n K(nt/N^{1/2}) \quad \text{where} \quad K(t) := \frac{1}{2\pi i} \int_{\Re(s) = c} t^{-s} \gamma_A(s) \, ds$$

and this function is analytic for complex t such that $\Re(t^{2/d}) > 0$, i.e. in a cone containing the positive real half-line. The functional equation for Λ translates into

$$\theta(a, 1/t) - t^k \theta(a^*, t) = P_{\Lambda}(t),$$

where P_{Λ} is a polynomial in t and $\log t$ given by the Taylor development of the polar part of Λ : there are no \log 's if all poles are simple, and P = 0 if Λ is entire.

Main algorithms (1/2)

First Goal: Approximate L(a, s), $\Lambda(a, s)$, $\theta(a, t)$ and their derivatives at regular points.

 \checkmark (1) Compute the inverse Mellin transform of $\gamma_A(s)$:

$$G(x) = \frac{1}{2\pi i} \int_{\Re(s)=c} x^{-s} \gamma_A(s) \, ds.$$

For large x, G(x) decreases exponentially, roughly as $\exp(-d\pi \operatorname{Re}(x^{2/d}))$. Complexity $\widetilde{O}(B^c)$ for absolute error $< 2^{-B}$ and $c(d) \leqslant 3$ (e.g. c(1) = 1)

(2) Compute

$$\theta(a,t) = \sum_{n \ge 1} a_n G(nt/N^{1/2});$$

for $t\geqslant 1,$ absolute error $2^{-B},$ use roughly $N^{1/2}B^{d/2}$ terms.

Main algorithms (2/2)

 ${f P}$ (3) Compute, for h small enough, $\Lambda(a,s) pprox \sum_{n\in {\Bbb Z}} \Lambda(a,s+2\pi i n/h)$

$$= \operatorname{explicit polar part} + h \sum_{m \geqslant 1} e^{mhs} \theta(a, e^{mh}) + h \sum_{m \geqslant 1} e^{mh(k-s)} \theta(a^*, e^{mh})$$

The coefficients $\theta(a,e^{mh})$, $\theta(a^*,e^{mh})$ are independent of s!

.4) Compute

$$L(a,s) = \Lambda(a,s) N^{-s/2} / \gamma_A(s).$$

Secundary Goal: If some of the quantities needed before are unknown (e.g. N or a_2 or...), guess them from θ 's functional equation evaluated in many points.

Second part: Practice

Data structures describing \boldsymbol{L} and Theta functions

In PARI/GP we have 3 levels of description for Theta or L-functions:

- In Lmath is an high-level description of the underlying mathematical situation, to which e.g., we associate the a_p as traces of Frobenius elements; this is done via constructors to be described shortly.
- an Ldata is a low-level description, containing the complete datum (a, a^*, A, k, N, Λ 's polar part). This is obtained via the function lfuncreate.
- In Linit contains an Ldata and everything needed for fast numerical computations in a certain domain: it specifies
 - (1) the functions to be considered either $L^{(j)}(s)$ or $\theta^{(j)}(t)$ for derivatives of order $j \leq m$, where m is now fixed;
 - (2) the range of arguments t or s, respectively to certain cones and rectangular regions;
 - (3) the output bit accuracy.

This is obtained via the functions Ifuninit and Ifunthetainit respectively.

First example: Riemann zeta

```
L = lfuncreate(1); \\'1' = Riemann zeta function
lfun(L, 2)
lfunzeros(L,30)
\pb 32
L = lfuninit(L, [1/2, 0, 30]);
ploth(t = 0, 30, lfunhardy(L,t))
```

Generalization : Kronecker character. If D is a fundamental discriminant, then lfuncreate(D) is L((D/.), s).

Second example: Dedekind zeta

```
L = lfuncreate('x^3-2); \\Q(2^(1/3))
lfun(L, 2)
lfunzeros(L,30)
\pb 32
L = lfuninit(L, [1/2, 0, 30]);
ploth(t = 0, 30, lfunhardy(L,t))
```

Third example: Hasse-Weil zeta functions

```
E = ellinit([0,0,1,-7,6]);
L = lfuncreate(E); \ \ (E,s)
lfun(L, 1)
lfun(E, 1)
lfun(L, 1, 1)\\L'
lfun(L, 1, 2)\\2nd derivative
lfun(L, 1, 3)\\3rd derivative
ellanalyticrank(E)
lfunzeros(L,30)
\pb 32
Lbad = lfuninit(L, [1/2, 0, 30]); \\BUG !!!
ploth(t = 0, 30, lfunhardy(Lbad,t))
L = lfuninit(L, [1, 0, 30]); \setminus Better
ploth(t = 0, 30, lfunhardy(L,t))
```

Dirichlet characters (1/3)

In PARI/GP, given a finite abelian group

$$G = (\mathbb{Z}/o_1\mathbb{Z})g_1 \oplus \cdots \oplus (\mathbb{Z}/o_d\mathbb{Z})g_d,$$

with fixed generators g_i of respective order o_i , then

• the column vector $[x_1, \ldots, x_d]$ represents the element $g \cdot x := \sum_{i \leq d} x_i g_i$;

 \checkmark the *row* vector $[c_1, \ldots, c_d]$, represents the character mapping $g_i \mapsto e(c_i/o_i)$ for each i.

The group G is given by a GP structure, e.g. **bid**, **bnf**, **bnr**. We can choose $(g_i) := G$.gen (SNF generators), hence $(o_i) = G$.cyc and $o_d | \cdots | o_1$ (elementary divisors). But it is possible to choose other generators.

Dirichlet characters (2/3)

For Dirichlet characters modulo $q = \prod_p p^{e_p}$, there is another standard choice: Conrey generators (smallest primitive roots mod p^{e_p}). Conrey logarithm/exponential: map between

- \checkmark elements in $(\mathbb{Z}/q\mathbb{Z})^*$: **znconreyexp**,
- their discrete logs in terms of the Conrey generators: znconreylog, a column vector.

To such an element $m \in (\mathbb{Z}/q\mathbb{Z})^*$ we attach the Conrey character $\chi_q(m, \cdot)$.

See also znconreychar (in terms of SNF generators); so three possible representation of a character: one in terms of SNF generators and two (exp/log) in terms of Conrey generators.

Dirichlet characters (3/3)

```
G = idealstar(, 100);
G.cyc
chi = [2,0]; \\in terms of SNF gens.
m = znconreyexp(G, chi)
c = znconreylog(G, m)
s = ideallog(, m, G) znconreylog(G, chi)
znconreychar(G, m)
znconreychar(G, c) \\Bad input !
znconreychar(G, s) \\OK
```

Dirichlet *L***-function**

```
N = 100; G = idealstar(, N); \backslash (Z/100Z)^*
G.cyc
chi = [2, 0]
L = lfuncreate([G, chi]);
znconreyconductor(G, chi) \\not primitive !
lfun(L, 1)
lfunlambda(L, 1)
lfuntheta(L, 1)
N = znconreyconductor(G, chi, &chi0)
GO = idealstar(,N);
```

Hecke *L*-function

```
K = bnfinit(x^3-7);
G = bnrinit(K, [11, [1]]);
G.cyc
chi = [1]
L = lfuncreate([G, chi]);
lfun(L, 0)
L = lfuninit(L, [1/2, 1/2, 30]);
lfun(L, 0)
lfun(L, 1)
lfunzeros(L,30)
ploth(t = 0, 30, lfunhardy(L,t))
```