L-functions in PARI/GP

Karim Belabas (with Bill Allombert, Henri Cohen, Pascal Molin)

PNR|选

First part: Theory

L and Λ-functions (1/3)

Let $\Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma(s / 2)$, where Γ is Euler's gamma function; given a d-tuple $A=\left[\alpha_{1}, \ldots, \alpha_{d}\right] \in \mathbb{C}^{d}$, let $\gamma_{A}:=\prod_{\alpha \in A} \Gamma_{R}(s+\alpha)$

Given

- a sequence $a=\left(a_{n}\right)_{n \geqslant 1}$ of complex numbers such that $a_{1}=1$,
- a positive conductor $N \in \mathbb{Z}_{>0}$,
- a gamma factor γ_{A} as above,
we consider the Dirichlet series

$$
L(a, s)=\sum_{n \geqslant 1} a_{n} n^{-s}
$$

and the associated completed function

$$
\Lambda_{N, A}(a, s)=N^{s / 2} \cdot \gamma_{A}(s) \cdot L(a, s)
$$

L and Λ-functions (2/3)

A weak L-function is a Dirichlet series $L(s)=\sum_{n \geqslant 1} a_{n} n^{-s}$ such that

- The coefficients $a_{n}=O_{\varepsilon}\left(n^{C+\varepsilon}\right)$ have polynomial growth. Equivalently, $L(s)$ converges absolutely in some right half-plane $\Re(s)>C+1$.
- The function $L(s)$ has a meromorphic continuation to the whole complex plane with finitely many poles.

This becomes an L-function if it satisfies a functional equation: there exist a "dual" sequence a^{*} defining a weak L-function $L\left(a^{*}, s\right)$, an integer k, and completed functions

$$
\begin{aligned}
\Lambda(a, s) & =N^{s / 2} \gamma_{A}(s) \cdot L(a, s) \\
\Lambda\left(a^{*}, s\right) & =N^{s / 2} \gamma_{A}(s) \cdot L\left(a^{*}, s\right)
\end{aligned}
$$

such that $\Lambda(a, k-s)=\Lambda\left(a^{*}, s\right)$ for all regular points.

L and Λ-functions (3/3)

In number theory, additional constraints arise

- $a^{*}=\varepsilon \cdot \bar{a}$ for some root number ε of modulus 1 ; often, $\varepsilon= \pm 1$;
- the complex coeffients a live in the ring of integer of some fixed number field, often in \mathbb{Z} or a cyclotomic ring $\mathbb{Z}[\zeta]$;
- the growth exponent such that $a_{n}=O_{\varepsilon}\left(n^{C+\varepsilon}\right)$ can be taken as $C=(k-1) / 2$ if L is entire (Ramanujan-Petersson), and $C=k-1$ otherwise;
- the L-function satisfies an Euler product $L(s)=\prod_{p \text { prime }} L_{p}(s)$, where the local factor $L_{p}(s)$ is a rational function in p^{-s};
- the α_{i} are integers, often in $\{0,1\}$.

The current PARI implementation assumes that $a^{*}=\varepsilon \cdot \bar{a}$ and chooses C as above; these restrictions are being removed.

Θ-functions

To an L-function, we associate a Theta function via Mellin inversion: for positive real $t>0$, we let

$$
\theta(a, t):=\frac{1}{2 \pi i} \int_{\Re(s)=c} t^{-s} \Lambda(s) d s
$$

where c is any positive real number $c>C+1$ such that $c+\Re(a)>0$ for all $a \in A$. In fact, we have

$$
\theta(a, t)=\sum_{n \geqslant 1} a_{n} K\left(n t / N^{1 / 2}\right) \quad \text { where } \quad K(t):=\frac{1}{2 \pi i} \int_{\Re(s)=c} t^{-s} \gamma_{A}(s) d s
$$

and this function is analytic for complex t such that $\Re\left(t^{2 / d}\right)>0$, i.e. in a cone containing the positive real half-line. The functional equation for Λ translates into

$$
\theta(a, 1 / t)-t^{k} \theta\left(a^{*}, t\right)=P_{\Lambda}(t)
$$

where P_{Λ} is a polynomial in t and $\log t$ given by the Taylor development of the polar part of Λ : there are no log's if all poles are simple, and $P=0$ if Λ is entire.

Main algorithms (1/2)

First Goal: Approximate $L(a, s), \Lambda(a, s), \theta(a, t)$ and their derivatives at regular points.

- (1) Compute the inverse Mellin transform of $\gamma_{A}(s)$:

$$
G(x)=\frac{1}{2 \pi i} \int_{\Re(s)=c} x^{-s} \gamma_{A}(s) d s
$$

For large $x, G(x)$ decreases exponentially, roughly as $\exp \left(-d \pi \operatorname{Re}\left(x^{2 / d}\right)\right)$. Complexity $\widetilde{O}\left(B^{c}\right)$ for absolute error $<2^{-B}$ and $c(d) \leqslant 3$ (e.g. $c(1)=1$)

- (2) Compute

$$
\theta(a, t)=\sum_{n \geqslant 1} a_{n} G\left(n t / N^{1 / 2}\right)
$$

for $t \geqslant 1$, absolute error 2^{-B}, use roughly $N^{1 / 2} B^{d / 2}$ terms.

Main algorithms (2/2)

((3) Compute, for h small enough, $\Lambda(a, s) \approx \sum_{n \in \mathbb{Z}} \Lambda(a, s+2 \pi i n / h)$

$$
=\text { explicit polar part }+h \sum_{m \geqslant 1} e^{m h s} \theta\left(a, e^{m h}\right)+h \sum_{m \geqslant 1} e^{m h(k-s)} \theta\left(a^{*}, e^{m h}\right)
$$

The coefficients $\theta\left(a, e^{m h}\right), \theta\left(a^{*}, e^{m h}\right)$ are independent of s !

- (4) Compute

$$
L(a, s)=\Lambda(a, s) N^{-s / 2} / \gamma_{A}(s)
$$

Secundary Goal: If some of the quantities needed before are unknown (e.g. N or a_{2} or...), guess them from θ 's functional equation evaluated in many points.

Second part: Practice

Data structures describing L and Theta functions

In PARI/GP we have 3 levels of description for Theta or L-functions:

- an Lmath is an high-level description of the underlying mathematical situation, to which e.g., we associate the a_{p} as traces of Frobenius elements; this is done via constructors to be described shortly.
- an Ldata is a low-level description, containing the complete datum ($a, a^{*}, A, k, N, \Lambda$'s polar part). This is obtained via the function Ifuncreate.
- an Linit contains an Ldata and everything needed for fast numerical computations in a certain domain: it specifies
(1) the functions to be considered either $L^{(j)}(s)$ or $\theta^{(j)}(t)$ for derivatives of order $j \leqslant m$, where m is now fixed;
(2) the range of arguments t or s, respectively to certain cones and rectangular regions;
(3) the output bit accuracy.

This is obtained via the functions Ifuninit and Ifunthetainit respectively.

First example: Riemann zeta

```
L = lfuncreate(1); \\'1' = Riemann zeta function
lfun(L, 2)
lfunzeros(L,30)
\pb 32
L = lfuninit(L, [1/2, 0, 30]);
ploth(t = 0, 30, lfunhardy(L,t))
```

Generalization : Kronecker character. If D is a fundamental discriminant, then lfuncreate (D) is $L((D /), s$.$) .$

Second example: Dedekind zeta

$\mathrm{L}=$ lfuncreate ('x^3-2);
Q(2^(1/3))
lfun(L, 2)
lfunzeros(L, 30)
\pb 32
L = lfuninit(L, [1/2, 0, 30]);
ploth(t = 0, 30, lfunhardy(L,t))

Third example: Hasse-Weil zeta functions

```
E = ellinit([0,0,1,-7,6]);
L = lfuncreate(E); \\L(E,s)
lfun(L, 1)
lfun(E, 1)
lfun(L, 1, 1)\\L'
lfun(L, 1, 2)\\2nd derivative
lfun(L, 1, 3)\\3rd derivative
ellanalyticrank(E)
lfunzeros(L,30)
\pb 32
Lbad = lfuninit(L, [1/2, 0, 30]); \\BUG !!!
ploth(t = 0, 30, lfunhardy(Lbad,t))
L = lfuninit(L, [1, 0, 30]); \\Better
ploth(t = 0, 30, lfunhardy(L,t))
```


Dirichlet characters (1/3)

In PARI/GP, given a finite abelian group

$$
G=\left(\mathbb{Z} / o_{1} \mathbb{Z}\right) g_{1} \oplus \cdots \oplus\left(\mathbb{Z} / o_{d} \mathbb{Z}\right) g_{d}
$$

with fixed generators g_{i} of respective order o_{i}, then

- the column vector $\left[x_{1}, \ldots, x_{d}\right] \sim$ represents the element $g \cdot x:=\sum_{i \leqslant d} x_{i} g_{i}$;
- the row vector $\left[c_{1}, \ldots, c_{d}\right]$, represents the character mapping $g_{i} \mapsto e\left(c_{i} / o_{i}\right)$ for each i.

The group G is given by a GP structure, e.g. bid, bnf, bnr. We can choose $\left(g_{i}\right):=G$.gen (SNF generators), hence $\left(o_{i}\right)=G$.cyc and $o_{d}|\cdots| o_{1}$ (elementary divisors). But it is possible to choose other generators.

Dirichlet characters (2/3)

For Dirichlet characters modulo $q=\prod_{p} p^{e_{p}}$, there is another standard choice: Conrey generators (smallest primitive roots mod $p^{e_{p}}$). Conrey logarithm/exponential: map between

○ elements in $(\mathbb{Z} / q \mathbb{Z})^{*}$: znconreyexp,

- their discrete logs in terms of the Conrey generators: znconreylog, a column vector.

To such an element $m \in(\mathbb{Z} / q \mathbb{Z})^{*}$ we attach the Conrey character $\chi_{q}(m, \cdot)$.
See also znconreychar (in terms of SNF generators); so three possible representation of a character: one in terms of SNF generators and two (exp/log) in terms of Conrey generators.

Dirichlet characters (3/3)

```
G = idealstar(, 100);
G.cyc
chi = [2,0]; \\in terms of SNF gens.
m = znconreyexp(G, chi)
c = znconreylog(G, m)
s = ideallog(, m, G) znconreylog(G, chi)
znconreychar(G, m)
znconreychar(G, c) \\Bad input !
znconreychar(G, s) \\OK
```


Dirichlet L-function

```
N = 100; G = idealstar(, N); \\(Z/100Z)^*
G.cyc
chi = [2, 0]
L = lfuncreate([G, chi]);
znconreyconductor(G, chi) \\not primitive !
lfun(L, 1)
lfunlambda(L, 1)
lfuntheta(L, 1)
N = znconreyconductor(G, chi, &chi0)
GO = idealstar(,N);
```


Hecke L-function

```
K = bnfinit(x^3-7);
G = bnrinit(K, [11, [1]]);
G.cyc
chi = [1]
L = lfuncreate([G, chi]);
lfun(L, 0)
L = lfuninit(L, [1/2,1/2,30]);
lfun(L, 0)
lfun(L, 1)
lfunzeros(L,30)
ploth(t = 0, 30, lfunhardy(L,t))
```

