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First part: Theory
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L and Λ-functions (1/3)

Let ΓR(s) = π−s/2Γ(s/2), where Γ is Euler’s gamma function; given a d-tuple

A = [α1, . . . , αd] ∈ C
d, let γA :=

∏
α∈A ΓR(s + α)

Given

a sequence a = (an)n>1 of complex numbers such that a1 = 1,

a positive conductor N ∈ Z>0,

a gamma factor γA as above,

we consider the Dirichlet series

L(a, s) =
∑

n>1

ann−s

and the associated completed function

ΛN,A(a, s) = N s/2 · γA(s) · L(a, s).
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L and Λ-functions (2/3)

A weak L-function is a Dirichlet series L(s) =
∑

n>1 ann−s such that

The coefficients an = Oε(nC+ε) have polynomial growth. Equivalently, L(s) converges

absolutely in some right half-plane ℜ(s) > C + 1.

The function L(s) has a meromorphic continuation to the whole complex plane with finitely

many poles.

This becomes an L-function if it satisfies a functional equation: there exist a “dual” sequence a∗

defining a weak L-function L(a∗, s), an integer k, and completed functions

Λ(a, s) = N s/2γA(s) · L(a, s),

Λ(a∗, s) = N s/2γA(s) · L(a∗, s),

such that Λ(a, k − s) = Λ(a∗, s) for all regular points.
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L and Λ-functions (3/3)

In number theory, additional constraints arise

a∗ = ε · a for some root number ε of modulus 1; often, ε = ±1;

the complex coeffients a live in the ring of integer of some fixed number field, often in Z or a

cyclotomic ring Z[ζ];

the growth exponent such that an = Oε(nC+ε) can be taken as C = (k − 1)/2 if L is

entire (Ramanujan-Petersson), and C = k − 1 otherwise;

the L-function satisfies an Euler product L(s) =
∏

p prime Lp(s), where the local factor

Lp(s) is a rational function in p−s;

the αi are integers, often in {0, 1}.

The current PARI implementation assumes that a∗ = ε · a and chooses C as above; these

restrictions are being removed.
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Θ-functions

To an L-function, we associate a Theta function via Mellin inversion: for positive real t > 0, we let

θ(a, t) :=
1

2πi

∫

ℜ(s)=c
t−sΛ(s) ds

where c is any positive real number c > C + 1 such that c + ℜ(a) > 0 for all a ∈ A. In fact,

we have

θ(a, t) =
∑

n>1

anK(nt/N1/2) where K(t) :=
1

2πi

∫

ℜ(s)=c
t−sγA(s) ds

and this function is analytic for complex t such that ℜ(t2/d) > 0, i.e. in a cone containing the

positive real half-line. The functional equation for Λ translates into

θ(a, 1/t) − tkθ(a∗, t) = PΛ(t),

where PΛ is a polynomial in t and log t given by the Taylor development of the polar part of Λ:

there are no log’s if all poles are simple, and P = 0 if Λ is entire.
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Main algorithms (1/2)

First Goal: Approximate L(a, s), Λ(a, s), θ(a, t) and their derivatives at regular points.

(1) Compute the inverse Mellin transform of γA(s):

G(x) =
1

2πi

∫

ℜ(s)=c
x−sγA(s) ds.

For large x, G(x) decreases exponentially, roughly as exp(−dπ Re(x2/d)). Complexity

Õ(Bc) for absolute error < 2−B and c(d) 6 3 (e.g. c(1) = 1)

(2) Compute

θ(a, t) =
∑

n>1

anG(nt/N1/2);

for t > 1, absolute error 2−B , use roughly N1/2Bd/2 terms.
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Main algorithms (2/2)

(3) Compute, for h small enough, Λ(a, s) ≈
∑

n∈Z Λ(a, s + 2πin/h)

= explicit polar part + h
∑

m>1

emhsθ(a, emh) + h
∑

m>1

emh(k−s)θ(a∗, emh)

The coefficients θ(a, emh), θ(a∗, emh) are independent of s!

(4) Compute

L(a, s) = Λ(a, s)N−s/2/γA(s).

Secundary Goal: If some of the quantities needed before are unknown (e.g. N or a2 or. . . ),

guess them from θ’s functional equation evaluated in many points.
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Second part: Practice
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Data structures describing L and Theta functions

In PARI/GP we have 3 levels of description for Theta or L-functions:

an Lmath is an high-level description of the underlying mathematical situation, to which e.g.,

we associate the ap as traces of Frobenius elements; this is done via constructors to be

described shortly.

an Ldata is a low-level description, containing the complete datum

(a, a∗, A, k, N, Λ’s polar part). This is obtained via the function lfuncreate.

an Linit contains an Ldata and everything needed for fast numerical computations in a certain

domain: it specifies

(1) the functions to be considered either L(j)(s) or θ(j)(t) for derivatives of order j 6 m,

where m is now fixed;

(2) the range of arguments t or s, respectively to certain cones and rectangular regions;

(3) the output bit accuracy.

This is obtained via the functions lfuninit and lfunthetainit respectively.
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First example: Riemann zeta

L = lfuncreate(1); \\’1’ = Riemann zeta function

lfun(L, 2)

lfunzeros(L,30)

\pb 32

L = lfuninit(L, [1/2, 0, 30]);

ploth(t = 0, 30, lfunhardy(L,t))

Generalization : Kronecker character. If D is a fundamental discriminant, then lfuncreate(D)

is L((D/.), s).
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Second example: Dedekind zeta

L = lfuncreate(’x^3-2); \\Q(2^(1/3))

lfun(L, 2)

lfunzeros(L,30)

\pb 32

L = lfuninit(L, [1/2, 0, 30]);

ploth(t = 0, 30, lfunhardy(L,t))
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Third example: Hasse-Weil zeta functions

E = ellinit([0,0,1,-7,6]);

L = lfuncreate(E); \\L(E,s)

lfun(L, 1)

lfun(E, 1)

lfun(L, 1, 1)\\L’

lfun(L, 1, 2)\\2nd derivative

lfun(L, 1, 3)\\3rd derivative

ellanalyticrank(E)

lfunzeros(L,30)

\pb 32

Lbad = lfuninit(L, [1/2, 0, 30]); \\BUG !!!

ploth(t = 0, 30, lfunhardy(Lbad,t))

L = lfuninit(L, [1, 0, 30]); \\Better

ploth(t = 0, 30, lfunhardy(L,t))
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Dirichlet characters (1/3)

In PARI/GP, given a finite abelian group

G = (Z/o1Z)g1 ⊕ · · · ⊕ (Z/odZ)gd,

with fixed generators gi of respective order oi, then

the column vector [x1, . . . , xd]˜ represents the element g · x :=
∑

i6d xigi;

the row vector [c1, . . . , cd], represents the character mapping gi 7→ e(ci/oi) for each i.

The group G is given by a GP structure, e.g. bid, bnf, bnr. We can choose (gi) := G.gen

(SNF generators), hence (oi) = G.cyc and od | · · · | o1 (elementary divisors). But it is

possible to choose other generators.
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Dirichlet characters (2/3)

For Dirichlet characters modulo q =
∏

p pep , there is another standard choice: Conrey

generators (smallest primitive roots mod pep ). Conrey logarithm/exponential: map between

elements in (Z/qZ)∗: znconreyexp,

their discrete logs in terms of the Conrey generators: znconreylog, a column vector.

To such an element m ∈ (Z/qZ)∗ we attach the Conrey character χq(m, ·).

See also znconreychar (in terms of SNF generators); so three possible representation of a

character: one in terms of SNF generators and two (exp/log) in terms of Conrey generators.
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Dirichlet characters (3/3)

G = idealstar(, 100);

G.cyc

chi = [2,0]; \\in terms of SNF gens.

m = znconreyexp(G, chi)

c = znconreylog(G, m)

s = ideallog(, m, G) znconreylog(G, chi)

znconreychar(G, m)

znconreychar(G, c) \\Bad input !

znconreychar(G, s) \\OK
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Dirichlet L-function

N = 100; G = idealstar(, N); \\(Z/100Z)^*

G.cyc

chi = [2, 0]

L = lfuncreate([G, chi]);

znconreyconductor(G, chi) \\not primitive !

lfun(L, 1)

lfunlambda(L, 1)

lfuntheta(L, 1)

N = znconreyconductor(G, chi, &chi0)

G0 = idealstar(,N);

Atelier PARI/GP 2016 (12/01/2016) – p. 17/18



Hecke L-function

K = bnfinit(x^3-7);

G = bnrinit(K, [11, [1]]);

G.cyc

chi = [1]

L = lfuncreate([G, chi]);

lfun(L, 0)

L = lfuninit(L, [1/2,1/2,30]);

lfun(L, 0)

lfun(L, 1)

lfunzeros(L,30)

ploth(t = 0, 30, lfunhardy(L,t))
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