Hermitian lattices reduction

Thomas Camus

PhD student under the supervision of P. Elbaz-Vincent (IF) and J-G. Dumas (LJK)

UNIVERSITÉ DE GRENOBLE

January 16, 2015

• Part I: LLL algorithm for hermitian lattices

• Part II: Representations of fractional ideals

The theory of euclidean lattices and its algorithmic approach are well-known, but there are few studies of the algorithmic side for hermitian lattices.

H. Lenstra

A. Lenstra

L. Lovász

The inventors of the LLL algorithm

Part I: LLL algorithm for hermitian lattices

1 Introduction

2 Hermitian lattices over a quadratic euclidean number field

LLL-reduction LLL-reduction for hermitian lattices Usefulness for the SVP Computing LLL-reduced basis

Probabilistic analysis

Average case Experimental results Let $K = \mathbb{Q}(i\sqrt{d})$ with $d \in \{1, 2, 3, 7, 11\}$ and \mathbb{Z}_K be its maximal order.

Definition

A subgroup Λ of \mathbb{C}^m is called a \mathbb{Z}_K -lattice if there exists (e_1, \ldots, e_m) a \mathbb{C} -basis of \mathbb{C}^m such that $\Lambda = \mathbb{Z}_K e_1 \oplus \cdots \oplus \mathbb{Z}_K e_m$.

A $\mathbb{Z}_{\mathcal{K}}$ -lattice in \mathbb{C}^m may be described as a \mathbb{Z} -lattice in \mathbb{R}^{2m} .

Definition

The minimal norm of Λ is $\lambda_1(\Lambda) = \min_{x \in \Lambda \setminus \{0\}} ||x||^2$.

How to compute $\lambda_1(\Lambda)$ and a minimal vector of Λ ?

LLL-reduction for hermitian lattices

Let $\mathcal{E} = (e_1, \dots, e_m)$ be a \mathbb{C} -basis of \mathbb{C}^m . We denote by e_i^* and $\mu_{i,j}$ its Gram-Schmidt orthogonalization.

Let $0 < m_K < \delta < 1$, where m_K is the euclidean minima of K:

$$m_{\mathcal{K}} = \sup_{x \in \mathbb{C}} \inf_{y \in \mathbb{Z}_{\mathcal{K}}} |x - y|^2,$$

Definition

The basis \mathcal{E} is said δ -LLL-reduced if:

$$\begin{cases} |\mu_{i,j}|^2 \leqslant m_{\mathcal{K}} & \text{for } 1 \leqslant j < i \leqslant m, \\ \|e_i^*\|^2 \geqslant (\delta - |\mu_{i,i-1}|^2) \|e_{i-1}^*\|^2 & \text{for } 2 \leqslant i \leqslant m. \end{cases}$$

Computing a LLL-reduced basis of a \mathbb{Z}_K -lattice allow to approximate its minimal norm by giving a quasi-minimal vector.

Theorem

Let \mathcal{E} be a δ -LLL-reduced basis of a $\mathbb{Z}_{\mathcal{K}}$ -lattice Λ in \mathbb{C}^m . Then

$$\|e_1\|^2 \leq \left(\frac{1}{\delta - m_K}\right)^{m-1} \lambda_1(\Lambda).$$

Idea [Napias, Gan/Ling/Mow]

The original LLL algorithm (over \mathbb{Z}) can be generalised for \mathbb{Z}_{K} -lattices.

Therefore, one may compute a δ -LLL-reduced basis of a \mathbb{Z}_{K} -lattice Λ from one of its basis $\mathcal{E} = (e_1, \dots, e_m)$ using

$$\mathcal{O}\left(m^4\log_{\delta}\left(rac{\lambda_1(\Lambda)^{1/2}}{\|\mathcal{E}\|_{\infty}}
ight)
ight)$$

operations in \mathbb{C} .

The bound $||e_1||^2 \leq \left(\frac{1}{\delta - m_K}\right)^{m-1} \lambda_1(\Lambda)$ has been proven using $|\mu_{i,i-1}|^2 = m_K$: this is the worst case, which is unrealistic.

Theorem

Let $\mathcal{E} = (e_1, \ldots, e_m)$ be a basis of a \mathbb{Z}_K -lattice Λ in \mathbb{C}^m , to which the δ -LLL algorithm is applied. Assuming that the coefficients $|\mu_{i,i-1}|^2$ of the GSOP of \mathcal{E} are identically distributed random variables of density p, we get that:

$$\mathbb{E}(\log(\|e_1\|^2)) \leqslant \log(\lambda_1(\Lambda)) - (m-1)\int_0^{m_{\kappa}} \log(\delta - x)p(x)dx.$$

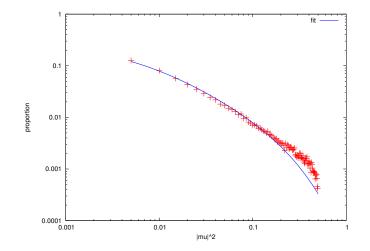
The density p has been approximated using experimental data.

Simple implementation in GP (\approx 400 lines). Tested on 500 bases in various dimension (50 to 150).

D	1	2	3	7	11
m _K	0.5	0.75	0.3333333	0.5714286	0.8181818
$\int_0^{m_\kappa} \log(\delta - x) p(x) dx$	- 0.0765100	- 0.09183234	- 0.0708416	- 0.0796641	- 0.0927955
$\frac{1/(\delta - m_k)}{\exp\left(-\int_0^{m_K}\log(\delta - x)\tilde{p}(x)dx\right)}$	1.8904972	3.8010754	1.4186946	2.2061385	6.3860367

$$p(x) = \begin{cases} \frac{a}{x+b}e^{-x/c} & \text{if } x \in [0, m_K], \\ 0 & \text{otherwise.} \end{cases}$$

Distribution and interpolation obtained in $\mathbb{Q}(i)$ for $\delta = 0.99$ (logarithmic scale)



Similar results for other fields.

• Part I: LLL algorithm for hermitian lattices

• Part II: Representations of fractional ideals

Let K be a number field of degree d and \mathbb{Z}_K be its ring of integers.

Definition

A fractional ideal of K is a \mathbb{Z}_K -submodule \mathfrak{a} of K for which one may find $\zeta \in \mathbb{Z}_K$ such that $\zeta \mathfrak{a} \subset \mathbb{Z}_K$. In this case, one may find a \mathbb{Q} -basis of K which is a \mathbb{Z} -basis of \mathfrak{a} .

How to represent ideals in an algorithmic setting?

In PARI/GP:

- HNF representation (idealhnf) \rightarrow easy to use.
- Two-element representation (idealtwoelt) \rightarrow memory-friendly.

Part II: representations of a fractional ideal

6 Introduction

6 Matrix representation

Two-element representation

naive algorithm Strong reduction, variable success rate Weak reduction, bounded failure rate Experimental results Let a be an integral ideal of K and $\omega = (\omega_1, \ldots, \omega_d)$ be an integral basis of K. We consider $\mathcal{E} = (e_1, \ldots, e_d)$ a \mathbb{Z} -basis of a.

Matrix representation of a

The ideal $\mathfrak a$ may be represented $\mathfrak a$ by the coordinates matrix of $\mathcal E$ with respect to $\omega.$

It gives a representation of \mathfrak{a} as an element of $M_d(\mathbb{Z}) \cap GL_d(\mathbb{Q})$.

Uniqueness of such a representation is achieved by choosing a specific basis of $\mathfrak a$ (i.e HNF).

Two-element representation: naive algorithm

Let \mathfrak{a} be an integral ideal of K.

Classical result

Let x be a non-zero element of a. There exists $y \in \mathfrak{a}$ such that $\mathfrak{a} = (x, y)$. Moreover, an element y chosen uniformly at random in $\mathfrak{a}/(x)$ satisfies $(x, y) = \mathfrak{a}$ with probability:

$$\mathbb{P}[(x,y) = \mathfrak{a}] = \prod_{\mathfrak{p} : v_{\mathfrak{p}}(x) > v_{\mathfrak{p}}(\mathfrak{a})} \left(1 - \frac{1}{\mathcal{N}(\mathfrak{p})}\right) \geq \prod_{\mathfrak{p} \mid \mathfrak{a}} \left(1 - \frac{1}{\mathcal{N}(\mathfrak{p})}\right).$$

Problems:

- Maximise the shortness of such a representation.
- Success rate depends on a.

Strong reduction, variable success rate

Lets add a size-reduction condition to the naive algorithm:

Algorithm 1

- **1** Choose $x \in \mathfrak{a}$ short (w.r.t the T_2 norm), using the LLL-algorithm.
- **2** Find $y \in \mathfrak{a}$ such that $(x, y) = \mathfrak{a}$, using naïve algorithm.
- **3** Size-reduce *y*.

It produces a representation $(x, y) = \mathfrak{a}$ such that:

```
\max\{\|x\|,\|y\|\} \in \mathcal{O}(\mathcal{N}(\mathfrak{a})^{1/d}).
```

 \rightarrow Strong reduction, but no changes on the success rate.

```
Implemented in GP(2C) (\approx 100 lines in C).
```

Weak reduction, bounded failure rate

Lets add a size-reduction to the algorithm used in the function idealtwoelt of GP :

Algorithm 2 [Fieker/Sthelé]

- Find b ⊂ a such that p|b implies N(p) ≥ y, for y a well-chosen constant.
- ${\it 2}$ Find a small two-element representation of ${\frak b},$ using the previous algorithm.
- **3** Recover a two-element representation of \mathfrak{a} from the one of \mathfrak{b} .

It produces a representation $(x, y) = \mathfrak{a}$ such that:

 $\max\{\|x\|,\|y\|\}\in \mathcal{O}(\mathcal{N}(\mathfrak{a})^{4/d}).$

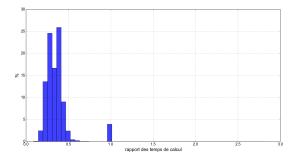
 \rightarrow Weaker size-reduction, increase of the overall complexity, but the failure rate is bounded (depending on a "success parameter" *t*):

 $\mathbb{P}[\mathsf{failure}] \leqslant 0.8^t$

Implemented in GP(2C) (\approx 500 lines in C).

Heuristic remarks (WiP)

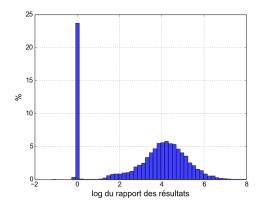
Ratio $\frac{\rm time~algorithm~1}{\rm time~algorithm~2}$ over all integral ideals of norm $\leqslant 5\cdot 10^4$ in a field of degree 25:



Despite the bounded failure rate, algorithm 2 tends to be way slower than algorithm 1. It seems that the control of the success rate does not outweigh the complexity explosion.

Heuristic remarks (WiP)

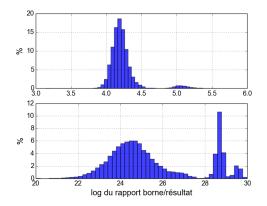
Ratio log $\frac{\rm result\ algorithm\ 2}{\rm result\ algorithm\ 1}$ over all integral ideals of norm $\leqslant 5\cdot 10^4$ in a field of degree 25:



As foreseen, algorithm 1 usually produces shorter representations than algorithm 2.

Heuristic remarks (WiP)

Ratio log $\frac{\rm theoretical\ bound}{\rm result\ algorithm}$ over all integral ideals of norm $\leqslant 5\cdot 10^4$ in a field of degree 25:



The theoretical bounds on the size of the elements seem to be quite large for both algorithms.

Thanks for listening!

References:

- Napias: A generalization of the LLL-algorithm over euclidean rings or orders(Journal de théorie des nombres de Bordeaux, 1996).
- Gan/Ling/Mow: Complex Lattice Reduction Algorithm for Low-Complexity MIMO Detection (IEEE, 2009).
- Scheider/Buchmann/Lindner: *Probabilistic analysis of LLL reduced bases* (WEWoRC, 2010).
- Fieker/Stehlé: Short bases of lattices over number fields (ANT, 2010).