S O N
The future of parallel GP

The future of parallel GP

B. Allombert

IMB
CNRS/Université Bordeaux 1

15/01/2015



The future of parallel GP

Summary from last year
Resources

The GP interface
Avoiding global variables
Using parfor/parforprime

Since the last year



The future of parallel GP

LSummary from last year

Introduction

PARI now supports two common multi-threading technologies :
» POSIX thread : run on a single machine, lightweight,
flexible, fragile.
» Message passing interface (MPI) : run on as many
machine as you want, robust, rigid, heavyweight. Used by
most clusters.

» To use POSIX threads, use . /Configure -mt=pthread
» Touse MPI, add . /Configure -mt=mpi

However the parallel GP interface does not depend on the
multithread interface : a properly written GP program will work
identically with both. In this tutorial we will focus on POSIX
threads.



The future of parallel GP

L Resources

Resources

The number of secondary threads to use is controlled by
default (nbthreads). The default value of nbthreads is the
number of CPU threads (i.e. the number of CPU cores
multiplied by the hyperthreading factor). The default can be
freely modified.

The PARI stack size in secondary threads is controlled by
default (threadsize), so the total memory allocated is
equal to parisize + nbthreads X threadsize. By default,
threadsize = parisize.

default (nbthreads)



The future of parallel GP

L Resources

The libpari interface

PARI provides an C interface for parallelizing PARI programs,
with the function mt_queue_start, mt_queue_submit,
mt_queue_get, mt_queue_end, See
examples/pari-mt.c.




The future of parallel GP
L The GP interface

The GP interface

GP provides functions that allows parallel execution of GP
code, subject to the following limitations : the parallel code

» must not access global variables or local variables
declared with 1ocal () (butmy () is OK),
» must be free of side effect.

The parallel functions are parapply, parselect, parfor,
parforprime, parsum, parvector, pareval. The functions
inline and self can be used to work around the limitation.



The future of parallel GP
I—The GP interface

Simple examples

ismersenne (x)=ispseudoprime (2"x-1) ;
default (timer, 1) ;

apply (ismersenne, primes (400))
parapply (ismersenne, primes (400))
select (ismersenne,primes (400),1)
parselect (ismersenne, primes (400),1)

u]
o)
I
ul
it




The future of parallel GP

LAvoiding global variables

Avoiding global variables

V=primes (400) ;

parvector (#V, 1, ispseudoprime (2°V[i]-1))
*%* parvector: mt: global variable not
*%% supported: V.

break

fun (V)

fun (V) =parvector (#V, 1, ispseudoprime (2"V[i]-1));

my (V=V) ; parvector (#V, i, ispseudoprime (2°V[i]-1))




The future of parallel GP
LAvoiding global variables

Avoiding global functions

ismersenne (x)=ispseudoprime (2"x-1);
fun (V) =parvector (#V, 1, ismersenne (V[i]));
fun (primes (400))
*%* parvector: mt: global variable not
* %% supported: ismersenne.

The simplest way to avoid that is to compile ismersenne with
GP2C.



The future of parallel GP

I—Avoiding global variables

Using inline

inline (ismersenne) ;

ismersenne (x)=ispseudoprime (2"x-1);

fun (V) =parvector (#V, i, ismersenne (V[i]));

fun (primes (400))



The future of parallel GP
LUsing parfor/parforprime

Using parfor/parforprime

inline (ismersenne) ;
ismersenne (x)=ispseudoprime (2"x-1) ;
parforprime (p=1, 999, ismersenne (p),c,if (c,print (p)))
prodmersenne (N) =
{ my(R=1);
parforprime (p=1,N,
ismersenne (p),
Cy
if(c, Rx=p));
R;
}

prodmersenne (1000)




R
The future of parallel GP
I—Using parfor/parforprime

:

inline (ismersenne) ;

ismersenne (x)=ispseudoprime (2"x-1) ;
findmersenne (a)

parforprime (p=a,, ismersenne(p),c,if (c, return(p)))
findmersenne (4000)

findmersenne (8)

findmersenne

(8
(8)

N



S O N
The future of parallel GP

I—Using parfor/parforprime

inline (ismersenne) ;
ismersenne (x)=ispseudoprime (2°x-1) ;
parfirst (fun,V)=

parfor(i=1, #V, ful’l(V[l] ) ’ jllf(jl return([irj] ) ) );
parfirst (ismersenne, [4001..5000])

u]

o)
I

ul
it
N
»
?



The future of parallel GP
L Since the last year

GP2C

GP2C is able to compile parallel code (with some limitation for
parfor and parforprime). Since GP2C transforms GP
functions to C functions, it does not store functions in global
variables, which is the major usability issue with the GP
interface. Thus in practice it is easier to use the parallelism with
GP2C.



The future of parallel GP
L Since the last year

Large scale use

We experimented with large scale use of parallel GP on clusters
using MPL.It performed correctly. We were able to compute the
modular polynomial of degree 3001 in 3 hours on 96 cores.



The future of parallel GP
LSince the last year

The future

v

Increasing portability.

Improving the MPI interface.
Improving the GP interface.
Adding parallel algorithms to GP.

v

v

v

u]
o)
I
ul
it




	Summary from last year
	Resources
	The GP interface
	Avoiding global variables
	Using parfor/parforprime
	Since the last year

