Hilbert class polynomials and modular polynomials

Hamish Ivey-Law hamish.ivey-law@inria.fr

¹LFANT team, INRIA Bordeaux Sud-Ouest

²Institut de Mathématiques de Bordeaux Université de Bordeaux 1

14th of January, 2015

Introduction

- This talk is about
 - Hilbert class polynomials: polclass
 - modular polynomials: polmodular
- For each of these topics we will
 - Briefly recall the main definitions and context.
 - Describe (in broad strokes) the algorithm(s) to compute them.
 - Describe (and solicit suggestions for) the PARI/GP interface to the implementation.
- The algorithms for computing Hilbert class polynomials and modular polynomials are due to **Andrew Sutherland** and his collaborators (including G. Bisson, R. Bröker, A. Enge, K. Lauter).

- Let $D \leqslant -3$ be a quadratic discriminant and denote the order of discriminant D by \mathcal{O}_D .
- The *j*-invariant of the elliptic curve C/O_D is an algebraic integer whose minimal polynomial H_D(X) is the Hilbert class polynomial for the discriminant D.
- The degree h(D) of $H_D(X)$ is the class number of D.
- The norm equation for D is

$$4p = t^2 - v^2 D$$

for some integers p, t and v, where p is prime.

• $H_D(X)$ splits completely over \mathbb{F}_p if p satisfies the norm equation.

How big is $H_D(X)$?

- Total size of $H_D(X)$ is $O(|D|^{1+\varepsilon})$ bits.
 - Degree is $O(|D|^{1/2} \log |D|)$
 - Let B be an upper bound for the height of the coefficients. Then $\log(B)$ is $O(|D|^{1/2}\log^2 |D|)$

D	h(D)	$h(D)\log(B)$
$10^{6} + 3$	105	113KB
$10^{8} + 3$	1702	33MB
$10^{10} + 3$	10538	2GB
$10^{12} + 3$	124568	265GB
$10^{14} + 3$	1425472	39TB

Class polynomials

Modular polynomials

When *p* satisfies the norm equation, $H_D(X)$ splits completely over \mathbb{F}_p and its roots are the *j*-invariants of the elliptic curves whose endomorphism rings are isomorphic to \mathcal{O}_D .

Definitions Algorithm

This allows us to compute $H_D(X)$ modulo such a *p*. Suppose $4p = t^2 - v^2D$ for some integers *t* and *v*. Then

- **(**) Search for a curve E/\mathbb{F}_p whose (absolute) trace is t.
- **2** Search for a curve E'/\mathbb{F}_p which is isogenous to E and has endomorphism ring \mathcal{O}_D . Its *j*-invariant j_0 gives a root of $H_D(X) \pmod{p}$.
- Enumerate all curves with endomorphism ring O_D using the action of cl(D), starting from j₀.
- Compute $H_D \pmod{p}$ as $H_D(X) = \prod_{\operatorname{End}(j)=\mathcal{O}_D} (X-j)$.

The complete algorithm to compute $H_D(X)$ just applies the CRT:

Class polynomials

Modular polynomials

Definitions

Algorithm

- **(**) Select a set S of split primes such that $\prod_{p \in S} p > 4B$.
- **2** Compute a suitable presentation for cl(D).
- For each $p \in S$
 - Compute $H_D(X) \pmod{p}$ (uses the presentation of cl(D)).
 - **2** Update CRT for each coefficient of $H_D(X) \pmod{p}$.

• Deduce the coefficients of $H_D(X)$.

To compute $H_D(X)$ over $\mathbb{Z}/M\mathbb{Z}$ one still has to compute $H_D \pmod{p}$ for sufficiently many primes p to determine H_D over \mathbb{Z} , even when M is small. Using the "explicit CRT" allows us to reduce the space required, but not the overall running time.

```
Interface: polclass(D, {x = 'x})
```

Complexity and performance

Assuming the GRH, to calculate $H_D(X)$ modulo an integer M, the algorithm

- uses $O(|D|^{1/2+\varepsilon} \log(M))$ space, and
- has expected running time $O(|D|^{1+\varepsilon})$.

Miscellaneous potentially useful functions

- Minimal polycyclic presentations
 - Small generators, not a basis
- Isogeny volcanoes
 - depth
 - navigation up/down
 - find level
 - path to surface/floor
- Affine models for modular curves $X_1(N)$ for $N \leq 50$.
- Find *j*-invariant of curve with given trace.
- Find *j*-invariant with given endomorphism ring
- Test for supersingularity (over arbitrary finite base field).

```
gp> D = -133563
%1 = -133563
gp> coredisc(D, 1)
%2 = [-3, 211]
gp> quadclassunit(D)
%3 = [70, [70], [Qfb(91, 47, 373)], 1]
gp> H = polclass(D);
time = 1,691 ms.
```

• The *modular polynomial* of level ℓ parameterises ℓ -isogenous pairs of elliptic curves over \mathbb{C} :

 $\Phi_{\ell}(j(E_1), j(E_2))$ if and only if E_1 and E_2 are ℓ -isogenous.

• This interpretation remains valid over any field of characteristic not dividing $\ell.$

How big is $\Phi_{\ell}(X, Y)$?

- Total size of $\Phi_{\ell}(X, Y)$ is $O(\ell^{3+\varepsilon})$ bits.
 - Degree in each variable is $\ell + 1$.
 - Let B be an upper bound for the height of the coefficients. Then $\log(B)$ is $6\ell \log(\ell) + O(\ell)$.

ℓ	size (MB) ¹
101	2.65
211	27.6
307	90.5
1009	3857.0

 $^{{}^{1}}N.B.$ This is half what we quote later because Φ_{ℓ} is symmetric, a fact not easily exploited in Pari.

Setup for odd level $\ell.$ Let

- O be an imaginary quadratic order of discriminant D whose class number satisfies h(D) ≥ ℓ + 2,
- $p \equiv 1 \pmod{\ell}$ be a prime satisfying $4p = t^2 v^2 \ell^2 D$ for some integers tand v with $\ell \nmid v$, and
- $R = \mathbb{Z} + \ell 0$ be the order of index ℓ in 0.

Such D and p are easy to find.

With the setup on the previous slide, $\Phi_{\ell}(X, Y) \pmod{p}$ is computed as follows:

- Find a root of $H_{\mathbb{O}}$ over \mathbb{F}_p .
- **2** Enumerate the roots j_i of H_{\odot} and identify ℓ -isogeny cycles.
- **③** For each j_i find an ℓ -isogenous j-invariant j'_i on the floor of the ℓ -volcano.
- **9** Enumerate the roots of H_R and identify ℓ^2 -isogeny cycles.
- O For each j_i compute Φ_ℓ(X, j_i) = ∏(X − j_k) where the product is over the neighbours of j_i in its ℓ-isogeny cycle together with the ℓ²-isogeny cycle containing j'_i.
- Interpolate $\Phi_{\ell} \in (\mathbb{F}_{p}[Y])[X]$ using the j_{i} and the polynomials $\Phi_{\ell}(X, j_{i})$.

Modular polynomial an arbitrary integer

Given an odd prime ℓ ,

- **9** Find a suitable order \bigcirc of discriminant D where $h(D) \ge \ell + 2$.
- **2** Compute the class polynomial $H_{\mathbb{O}}$ over \mathbb{Z} .
- Select a sufficiently large set S of primes of the form 4p = t² ℓ²v²D where ℓ ∤ v, p ≡ 1 (mod ℓ).
- For each prime p in S,
 - Compute $\Phi_{\ell}(X, Y) \pmod{p}$ using the previous algorithm using 0 and H_0 .
 - **2** Update CRT data using $\Phi_{\ell} \pmod{p}$.
- **⑤** Finalise CRT computation and output Φ_{ℓ} in $\mathbb{Z}[X, Y]$.

Complexity and performance

Assuming the GRH, to calculate $\Phi_{\ell}(X, Y)$ modulo an integer *M*, the algorithm

- uses $O(\ell^2(\log \ell)^2 + \ell^2 \log M)$ space, and
- has expected running time $O(\ell^3(\log \ell)^3 \log \log \ell)$.

```
Interface: polmodular(L, {x = 'x}, {y = 'y}, {compute_derivs = 0})
gp> polmodular(101); \\ about 5.5MB
  *** polmodular: Warning: increasing stack size to 32000000.
time = 6,174 ms.
gp> polmodular(199); \\ about 47MB
  *** polmodular: Warning: increasing stack size to 32000000.
  *** polmodular: Warning: increasing stack size to 64000000.
  *** polmodular: Warning: increasing stack size to 128000000.
  *** polmodular: Warning: increasing stack size to 256000000.
time = 57.387 ms.
gp > polmodular(199, random(Mod(1, 12)), 'x); \land about 16kB
  *** polmodular: Warning: increasing stack size to 16000000.
  *** polmodular: Warning: increasing stack size to 32000000.
  *** polmodular: Warning: increasing stack size to 64000000.
time = 51,637 ms.
```

Bill A. has tested polmodular on a machine with 96 cores, and lots of RAM.

	ℓ resu	t size (GB)	stack size (GB) wall clock time
100	97.	74	32	2m38s
200	66.	3	256	26m14s
300	1 234.	0	1000	2h16m29s

Definitions Algorithm

Summary of new features

- Hilbert class polynomials
 - modulo M or over $\mathbb Z$
 - with various modular functions (*)
- Modular polynomials
 - modulo M or over $\mathbb Z$
 - pre-instantiated
 - non-prime level (*)
 - with various modular functions (*)
- Navigating isogeny volcanoes
 - Depth, find level
 - Move up/down, path to surface/floor
 - Enumerate surface
 - Produce partial/complete (labelled) graph (?)

- Minimal polycyclic presentations
- Testing supersingularity
- Optimised equations for $X_1(N)$ for $N \leqslant 50$
- Find curves with given trace
- Find curve with given endo ring
- Explicit CRT (*)
- Calculate endomorphism ring of a given curve
- Action of cl(O) on $Ell_O(\mathbb{F}_p)$
- Enumerate kernel of $cl(\mathbb{Z} + NO) \rightarrow cl(O)$

 (\star) : something planned but not yet finished; (?): something that could be done if you want. Send suggestions to

hamish.ivey-law@inria.fr |!