Bianchi group calculations in PARI/GP

Alexander D. Rahm
Lecturer at the National University of Ireland at Galway

Atelier PARI/GP, Bordeaux, le 15 janvier 2015

Bianchi group calculations in PARI/GP

Information on the Bianchi groups that can be computed with the Bianchi.gp script in PARI/GP:

- Orbit space of the action of the Bianchi groups on hyperbolic space
- Symmetry-subdivided cell structure with stabilisers and identifications
- Equivariant K-homology
- Group homology
- Chen-Ruan orbifold cohomology

The Bianchi groups

Definition

For m a positive square-free integer, let \mathcal{O}_{-m} denote the ring of algebraic integers in the imaginary quadratic field extension $\mathbb{Q}[\sqrt{-m}]$ of the rational numbers.
The Bianchi groups are the projective special linear groups
$\Gamma:=\mathrm{PSL}_{2}\left(\mathcal{O}_{-m}\right)$.

Motivations

- Group theory
- Hyperbolic geometry
- Knot theory
- Automorphic forms
- Baum/Connes conjecture
- Algebraic K-theory
- Heat kernels
- Quantized orbifold cohomology

The upper-half space model acted on by $\mathrm{PSL}_{2}(\mathbb{Z})$

Underlying picture by Robert Fricke for Felix Klein's lecture notes, 1892

The $\mathrm{PSL}_{2}(\mathbb{Z})$-equivariant retraction

Alexander D. Rahm
Bianchi group calculations in PARI/GP

A fundamental domain for $\Gamma:=\mathrm{PSL}_{2}(\mathbb{Z}[\sqrt{-6}])$

(Picture created by Mathias Fuchs, using coordinates from Bianchi.gp)

Cell structure for $\Gamma:=\mathrm{PSL}_{2}(\mathbb{Z}[\sqrt{-6}])$

Cell stabilisers in $\Gamma:=\operatorname{PSL}_{2}(\mathbb{Z}[\omega]), \omega:=\sqrt{-6}$

$$
\begin{aligned}
& A:= \pm\left(\begin{array}{cc}
& -1 \\
1 &
\end{array}\right) \\
& B:= \pm\left(\begin{array}{cc}
-1-\omega & 2-\omega \\
2 & 1+\omega
\end{array}\right) \\
& R:= \pm\left(\begin{array}{cc}
-\omega & 5-\omega \\
1 & 1+\omega
\end{array}\right) \\
& S:= \pm\left(\begin{array}{cc}
-1 \\
1 & 1
\end{array}\right) \\
& V:= \pm\left(\begin{array}{cc}
1-\omega & 3 \\
3 & 1+\omega
\end{array}\right)
\end{aligned}
$$

$$
a_{3}
$$

$$
\begin{aligned}
& \Gamma_{u}=\left\langle B, S \mid B^{2}=S^{3}=(B S)^{3}=1\right\rangle \cong \mathcal{A}_{4} \\
& \Gamma_{v}=\left\langle B, R \mid B^{2}=R^{3}=(B R)^{3}=1\right\rangle \cong \mathcal{A}_{4} \\
& \Gamma_{a}=\left\langle S B \mid(S B)^{3}=1\right\rangle \cong \mathbb{Z} / 3 \mathbb{Z} \\
& \Gamma_{b}=\left\langle A \mid A^{2}=1\right\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \\
& \Gamma_{s}=\langle V, W \mid V W=W V\rangle \cong \mathbb{Z}^{2}
\end{aligned}
$$

History of computations for the Bianchi groups

- Fundamental domains in eleven cases by Bianchi, 1892
- Concept for an algorithm by Swan, 1971
- Fundamental polyhedra implementation by Riley, 1983
- Mendoza complex implementation by Vogtmann, 1985
- Fundamental domains by Cremona and students, 1984-2010
- Program for $\mathrm{GL}_{2}(\mathcal{O})$ by Yasaki, 2010 (Gunnells' algorithm)
- Recent SAGE package for Bianchi groups by Maite Aranes
- Recent MAGMA package for Kleinian groups by Aurel Page

Features of the Bianchi.gp script in PARI/GP

- Computation of the group cohomology, especially of the torsion Grunewald-Poincaré series
- Computation of the Bredon homology for operator K-theory
- Quantized orbifold cohomology computations
- Dimension computation for Bianchi modular forms spaces

Fritz Grunewald (1949-2010)

$$
P^{\ell}(t):=\sum_{q=\operatorname{vcd}(\Gamma)+1}^{\infty} \operatorname{dim}_{\mathbb{F}_{\ell}} \mathrm{H}_{q}(\Gamma ; \mathbb{Z} / \ell) t^{q}
$$

Some results in homological 3-torsion

Let $P_{m}^{3}(t):=\sum_{q=3}^{\infty} \operatorname{dim}_{\mathbb{F}_{3}} \mathrm{H}_{q}\left(\mathrm{PSL}_{2}\left(\mathcal{O}_{\mathbb{Q}[\sqrt{-m}]}\right) ; \mathbb{Z} / 3\right) t^{q}$.

m specifying the Bianchi group	3-torsion subcomplex, homeomorphism type	$P_{m}^{3}(t)$ $46,51,58,87,95,115,123,155$, $159,187,191,235,267$
$7,19,37,43,67,139,151,163$	$\frac{-2 t^{3}}{t-1}$	
$13,91,403,427$		$\frac{-t^{3}\left(t^{2}-t+2\right)}{(t-1)\left(t^{2}+1\right)}$

Group homology

Theorem (R., October 2011)

For all Bianchi groups with units $\{ \pm 1\}$, the homology in all degrees above their virtual cohomological dimension is given by the following Poincaré series:

$$
\begin{aligned}
P_{m}^{2}(t)= & \left(\lambda_{4}-\frac{3 \mu_{2}-2 \mu_{T}}{2}\right) P \\
& \text { and } P_{m}^{3}(t)=(t)+\left(\mu_{2}-\mu_{T}\right) P_{\mathcal{D}_{2}}^{*}(t)+\mu_{T} P_{\mathcal{A}_{4}}^{*}(t) \\
& (t)+\frac{\mu_{3}}{2} P_{\odot}(t)
\end{aligned}
$$

$$
(t):=\frac{-2 t^{3}}{t-1},
$$

$$
P \longrightarrow(t):=\frac{-t^{3}\left(t^{2}-t+2\right)}{(t-1)\left(t^{2}+1\right)}
$$

and the numbers	μ_{2}	μ_{3}	μ_{T}	$\lambda_{2 n}$
count conjugacy classes of	\mathcal{D}_{2}	\mathcal{S}_{3}	\mathcal{A}_{4}	\mathbb{Z} / n

For a prime ℓ, consider the subcomplex of the cell complex consisting of the cells with elements of order ℓ in their stabiliser. We call it the ℓ-torsion subcomplex.

Torsion subcomplex reduction

In the ℓ-torsion subcomplex, let σ be a cell of dimension $n-1$, lying in the boundary of precisely two n-cells τ_{1} and τ_{2}, the latter cells representing two different orbits. Assume further that no higher-dimensional cells of the ℓ-torsion subcomplex touch σ.
Condition for merging cells : $\widehat{\mathrm{H}}^{*}\left(\Gamma_{\tau_{1}}\right)_{(\ell)} \cong \widehat{\mathrm{H}}^{*}\left(\Gamma_{\tau_{2}}\right)_{(\ell)} \cong \widehat{\mathrm{H}}^{*}\left(\Gamma_{\sigma}\right)_{(\ell)}$.
This can be obtained with $\Gamma_{\tau_{1}} \cong \Gamma_{\tau_{2}}, \Gamma_{\sigma}$ being ℓ-normal and $\Gamma_{\tau_{1}} \cong \mathrm{~N}_{\Gamma_{\sigma}}\left(\operatorname{center}\left(\operatorname{Sylow}_{p}\left(\Gamma_{\sigma}\right)\right)\right)$.

Lemma

Let $\widetilde{X_{\ell}}$ be the Γ-complex obtained by orbit-wise merging two n-cells of the ℓ-torsion subcomplex X_{ℓ} satisfying the merging conditions.
Then,

$$
\widehat{\mathrm{H}}^{*}(\Gamma)_{(\ell)} \cong \widehat{H}_{\Gamma}^{*}\left(\widetilde{X_{\ell}}\right)_{(\ell)} .
$$

Classical method

Calculation of the orbit space $\underline{E} /$ /

(image source: Claudio Rocchini)

Limited number
of examples

Calculation of the orbit spaces of the torsion subcomplexes

General formulas for the torsion part

- of the homology of the groups $\mathrm{SL}_{2}(A)$ over any number ring $A(\mathrm{j} / \mathrm{w} \mathrm{M}$. Wendt)
- of the homology of the Coxeter tetrahedral groups
- of quantised orbifold cohomology
- of equivariant K-homology (to appear soon)

Equivariant K-homology

Theorem (R.)
Let $\Gamma:=\operatorname{PSL}_{2}\left(\mathcal{O}_{-m}\right)$. Then, for \mathcal{O}_{-m} principal, the equivariant K-homology of Γ has isomorphy types

	$m=1$	$m=2$	$m=3$	$m=7$	$m=11$	$m \in\{19,43,67,163\}$
$K_{0}^{\Gamma}(\underline{\underline{\Gamma}})$	\mathbb{Z}^{6}	$\mathbb{Z}^{5} \oplus \mathbb{Z} / 2$	$\mathbb{Z}^{5} \oplus \mathbb{Z} / 2$	\mathbb{Z}^{3}	$\mathbb{Z}^{4} \oplus \mathbb{Z} / 2$	$\mathbb{Z}^{\beta_{2}} \oplus \mathbb{Z}^{3} \oplus \mathbb{Z} / 2$
$K_{1}^{\Gamma}(\underline{\underline{\Gamma}})$	\mathbb{Z}	\mathbb{Z}^{3}	0	\mathbb{Z}^{3}	\mathbb{Z}^{3}	$\mathbb{Z} \oplus \mathbb{Z}^{\beta_{1}}$,

where the Betti numbers are

m	19	43	67	163
β_{1}	1	2	3	7
β_{2}	0	1	2	6.

The (analytical) assembly map

Paul Frank Baum

$$
\mu_{i}: K_{i}^{G}(\underline{\mathrm{E}} G) \longrightarrow K_{i}\left(C_{r}^{*}(G)\right), \quad i \in \mathbb{N} \cup\{0\}
$$

The vector space structure of the Chen/Ruan quantized orbifold cohomology

Let Γ be a discrete group acting by diffeomorphisms on a manifold Y, with finite stabilisers.

Definition

Let $T \subset \Gamma$ be a set of representatives of the conjugacy classes of elements of finite order of Γ. Set

$$
\mathrm{H}_{o r b}^{*}(Y / / \Gamma):=\bigoplus_{g \in T} \mathrm{H}^{*}\left(Y^{g} / C_{\Gamma}(g) ; \mathbb{Q}\right)
$$

Dimensions of Chen/Ruan orbifold cohomology

Theorem (R.)

$$
H_{\text {orb }}^{d}\left(\mathcal{H} / / \text { PSL }_{2}\left(\mathcal{O}_{-m}\right)\right) \cong \begin{cases}\mathbb{Q}, & d=0 \\ \mathbb{Q}^{\beta_{1}}, & d=1 \\ \mathbb{Q}^{\beta_{1}-1+\lambda_{4}+2 \lambda_{6}-\lambda_{6}^{*}}, & d=2 \\ \mathbb{Q}^{\lambda_{4}-\lambda_{4}^{*}+2 \lambda_{6}-\lambda_{6}^{*}}, & d=3 \\ 0 & \text { otherwise. }\end{cases}
$$

The Eichler-Shimura-Harder isomorphism

Let $\Gamma:=\mathrm{SL}_{2}\left(\mathcal{O}_{-m}\right)$. The space $\mathrm{H}_{\text {cusp }}^{1}\left(\Gamma ; E_{k, k}\right)$ is isomorphic to the space of weight $k+2$ cuspidal automorphic forms of Γ over $\mathbb{Q}(\sqrt{-m})$.

Discovered cases where there are genuine classes, where D is the discriminant of $\mathbb{Q}(\sqrt{-m})$.

$\|D\|$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{7 1}$	$\mathbf{8 7}$	$\mathbf{9 1}$	$\mathbf{1 5 5}$	$\mathbf{1 9 9}$	$\mathbf{2 2 3}$	$\mathbf{2 3 1}$	$\mathbf{3 3 9}$
k	12	10	1	2	6	4	1	0	4	1
dim	2	2	2	2	2	2	4	2	2	2

$\|D\|$	$\mathbf{3 4 4}$	$\mathbf{4 0 7}$	$\mathbf{4 0 8}$	$\mathbf{4 0 8}$	$\mathbf{4 0 8}$	$\mathbf{4 1 5}$	$\mathbf{4 3 5}$	$\mathbf{4 3 5}$	435	435
k	1	0	2	5	8	0	2	5	8	11
dim	2	2	2	2	2	2	2	2	2	2

$\|D\|$	$\mathbf{4 5 5}$	$\mathbf{4 8 3}$	$\mathbf{5 7 1}$	$\mathbf{5 7 1}$	$\mathbf{6 4 3}$	$\mathbf{7 6 0}$	$\mathbf{1 0 0 3}$	$\mathbf{1 0 0 3}$	$\mathbf{1 0 5 1}$	
k	0	1	0	1	0	2	0	1	0	
dim	2	2	2	2	2	2	2	2	2	

The Borel-Serre compactification for the Bianchi groups

Let Γ be a finite index subgroup in a Bianchi group. Consider the Borel-Serre compactification $\Gamma \backslash \widehat{\mathcal{H}}$ of the orbit space $\Gamma \backslash \mathcal{H}$. Its boundary $\partial(\Gamma \backslash \widehat{\mathcal{H}})$ consists of a 2-torus at each cusp s.
Consider the map α induced on homology when attaching the boundary $\partial(\ulcorner\backslash \widehat{\mathcal{H}})$ into $\Gamma \backslash \widehat{\mathcal{H}}$.

Theorem (Serre, 1970)

Suppose that the coefficient module M is equipped with a non-degenerate Γ-invariant \mathbb{C}-bilinear form. Then the rank of the map from $H^{1}(\Gamma ; M)$ to the disjoint sum of the $H^{1}\left(\Gamma_{s} ; M\right)$, induced by α, equals half of the rank of the disjoint sum of the $H^{1}\left(\Gamma_{s} ; M\right)$.

Question (Serre 1970).
How can one determine the kernel of α (in degree 1) ?

R., "On a question of Serre",

Note aux CRAS présentée par J.-P. Serre

Thank you

for your attention!

