Bianchi group calculations in PARI/GP

Alexander D. Rahm

Lecturer at the National University of Ireland at Galway

Atelier PARI/GP, Bordeaux, le 15 janvier 2015

イロト イポト イヨト イヨト

Information on the Bianchi groups that can be computed with the Bianchi.gp script in PARI/GP:

- Orbit space of the action of the Bianchi groups on hyperbolic space
- Symmetry-subdivided cell structure with stabilisers and identifications
- Equivariant *K*-homology
- Group homology
- Chen–Ruan orbifold cohomology

イロト イポト イヨト イヨト 二日

Definition

For *m* a positive square-free integer, let \mathcal{O}_{-m} denote the ring of algebraic integers in the imaginary quadratic field extension $\mathbb{Q}[\sqrt{-m}]$ of the rational numbers. The Bianchi groups are the projective special linear groups $\Gamma := \mathsf{PSL}_2(\mathcal{O}_{-m})$.

Motivations

- Group theory
- Hyperbolic geometry
- Knot theory
- Automorphic forms

- Baum/Connes conjecture
- Algebraic K-theory
- Heat kernels
- Quantized orbifold cohomology

イロト イポト イヨト イヨト

The upper-half space model acted on by $PSL_2(\mathbb{Z})$

Underlying picture by Robert Fricke for Felix Klein's lecture notes, 1892

990

The $PSL_2(\mathbb{Z})$ -equivariant retraction

A fundamental domain for $\Gamma := \mathsf{PSL}_2(\mathbb{Z}[\sqrt{-6}])$

(Picture created by Mathias Fuchs, using coordinates from Bianchi.gp)

$$\begin{array}{cccc} \mathsf{PSL}_2(\mathbb{Z}) & \hookrightarrow & \mathsf{PSL}_2(\mathbb{R}) & \circlearrowright & \mathcal{H}^2_{\mathbb{R}} \\ \downarrow & & \downarrow & \downarrow \\ \mathsf{PSL}_2(\mathcal{O}_{-m}) & \hookrightarrow & \mathsf{PSL}_2(\mathbb{C}) & \circlearrowright & \mathcal{H}^3_{\mathbb{R}} \end{array}$$

Alexander D. Rahm

Bianchi group calculations in PARI/GP

Cell structure for $\Gamma := \mathsf{PSL}_2(\mathbb{Z}[\sqrt{-6}])$

Alexander D. Rahm

Bianchi group calculations in PARI/GP

Cell stabilisers in $\Gamma := \mathsf{PSL}_2(\mathbb{Z}[\omega]), \ \omega := \sqrt{-6}$

Alexander D. Rahm Bianchi group calculations in PARI/GP

History of computations for the Bianchi groups

Luigi Bianchi (1856-1928)

- ► Fundamental domains in eleven cases by Bianchi, 1892
- Concept for an algorithm by Swan, 1971
- Fundamental polyhedra implementation by Riley, 1983
- Mendoza complex implementation by Vogtmann, 1985
- ► Fundamental domains by Cremona and students, 1984-2010
- Program for $GL_2(\mathcal{O})$ by Yasaki, 2010 (Gunnells' algorithm)
- Recent SAGE package for Bianchi groups by Maite Aranes
- ► Recent MAGMA package for Kleinian groups by Aurel Page

- Computation of the group cohomology, especially of the torsion Grunewald–Poincaré series
- Computation of the Bredon homology for operator K-theory
- Quantized orbifold cohomology computations
- Dimension computation for Bianchi modular forms spaces

Fritz Grunewald (1949-2010)

$$P^{\ell}(t) := \sum_{q \, = \, \mathrm{vcd}(\Gamma) + 1}^{\infty} \dim_{\mathbb{F}_{\ell}} \mathsf{H}_{q}\left(\Gamma; \, \mathbb{Z}/\ell\right) \, t^{q}.$$

Alexander D. Rahm

Bianchi group calculations in PARI/GP

Some results in homological 3-torsion

Let
$$P_m^3(t) := \sum_{q=3}^{\infty} \dim_{\mathbb{F}_3} H_q(\mathsf{PSL}_2(\mathcal{O}_{\mathbb{Q}[\sqrt{-m}]}); \mathbb{Z}/3)t^q.$$

m specifying the Bianchi group	3–torsion subcomplex, homeomorphism type	$P_m^3(t)$
2, 5, 6, 10, 11, 15, 22, 29, 34, 35, 46, 51, 58, 87, 95, 115, 123, 155, 159, 187, 191, 235, 267	O	$\frac{-2t^3}{t-1}$
7, 19, 37, 43, 67, 139, 151, 163	••	$rac{-t^3(t^2-t+2)}{(t-1)(t^2+1)}$
13, 91, 403, 427	••	$2\left(rac{-t^3(t^2-t+2)}{(t-1)(t^2+1)} ight)$
39	0.	$\frac{-2t^3}{t-1} + \frac{-t^3(t^2 - t + 2)}{(t-1)(t^2 + 1)}$

ヘロト ヘロト ヘビト ヘビト

E

990

Theorem (R., October 2011)

For all Bianchi groups with units $\{\pm 1\}$, the homology in all degrees above their virtual cohomological dimension is given by the following Poincaré series:

$$P_{m}^{2}(t) = \left(\lambda_{4} - \frac{3\mu_{2} - 2\mu_{T}}{2}\right) P \underbrace{(t) + (\mu_{2} - \mu_{T})P_{\mathcal{D}_{2}}^{*}(t) + \mu_{T}P_{\mathcal{A}_{4}}^{*}(t)}_{\text{and } P_{m}^{3}(t) = \left(\lambda_{6} - \frac{\mu_{3}}{2}\right) P \underbrace{(t) + \frac{\mu_{3}}{2}P_{\bullet \bullet \bullet}(t)}_{(t) + \frac{\mu_{3}}{2}P_{\bullet \bullet \bullet}(t),$$

イロト イボト イヨト イヨト

3

Extracting the torsion subcomplexes

 $(1)^{'}$

(33)

In the ℓ -torsion subcomplex, let σ be a cell of dimension n-1, lying in the boundary of precisely two *n*-cells τ_1 and τ_2 , the latter cells representing two different orbits. Assume further that no higher-dimensional cells of the ℓ -torsion subcomplex touch σ . *Condition for merging cells* : $\widehat{H}^*(\Gamma_{\tau_1})_{(\ell)} \cong \widehat{H}^*(\Gamma_{\tau_2})_{(\ell)} \cong \widehat{H}^*(\Gamma_{\sigma})_{(\ell)}$.

This can be obtained with $\Gamma_{\tau_1} \cong \Gamma_{\tau_2}$, Γ_{σ} being ℓ -normal and $\Gamma_{\tau_1} \cong N_{\Gamma_{\sigma}}$ (center(Sylow_p(Γ_{σ}))).

Lemma

Let X_{ℓ} be the Γ -complex obtained by orbit-wise merging two n-cells of the ℓ -torsion subcomplex X_{ℓ} satisfying the merging conditions. Then,

$$\widehat{\mathsf{H}}^*(\Gamma)_{(\ell)} \cong \widehat{\mathsf{H}}^*_{\Gamma}(\widetilde{X_{\ell}})_{(\ell)}.$$

イロト イポト イヨト イヨト 二日

Classical method

Systematic torsion subcomplex reduction

Calculation of the orbit space $E\Gamma/\Gamma$

(image source: Claudio Rocchini)

Limited number of examples

Calculation of the orbit spaces of the torsion subcomplexes

General formulas for the torsion part

- of the homology of the groups SL₂(A)
 over any number ring A (j/w M. Wendt)
- of the homology of the Coxeter tetrahedral groups
- of quantised orbifold cohomology
- of equivariant K-homology (to appear soon)

The Bredon chain complex for equivariant K-homology

Alexander D. Rahm Bianchi group calculations in PARI/GP

5900

E

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (R.) Let $\Gamma := PSL_2(\mathcal{O}_{-m})$. Then, for \mathcal{O}_{-m} principal, the equivariant *K*-homology of Γ has isomorphy types

	m = 1	<i>m</i> = 2	<i>m</i> = 3	<i>m</i> = 7	m = 11	$m \in \{19, 43, 67, 163\}$
$K_0^{\Gamma}(\underline{E}\Gamma)$	\mathbb{Z}^6	$\mathbb{Z}^5\oplus\mathbb{Z}/2$	$\mathbb{Z}^5\oplus\mathbb{Z}/2$	\mathbb{Z}^3	$\mathbb{Z}^4\oplus\mathbb{Z}/2$	$\mathbb{Z}^{\beta_2}\oplus\mathbb{Z}^3\oplus\mathbb{Z}/2$
$K_1^{\Gamma}(\underline{E}\Gamma)$	Z	\mathbb{Z}^3	0	\mathbb{Z}^3	\mathbb{Z}^3	$\mathbb{Z}\oplus\mathbb{Z}^{eta_1},$

where the Betti numbers are

т	19	43	67	163
_				
β_1	1	2	3	7
$eta_1\ eta_2$	0	1	2	6.

イロト イボト イヨト イヨト

Paul Frank Baum

Alain Connes

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mu_i: K_i^{\mathcal{G}}(\underline{\mathsf{E}}\mathcal{G}) \longrightarrow K_i(\mathcal{C}_r^*(\mathcal{G})), \qquad i \in \mathbb{N} \cup \{0\}$

Alexander D. Rahm Bianchi group calculations in PARI/GP

Let Γ be a discrete group acting by diffeomorphisms on a manifold Y, with finite stabilisers.

Definition

Let $T \subset \Gamma$ be a set of representatives of the conjugacy classes of elements of finite order of Γ . Set

$$\mathsf{H}^*_{orb}(Y//\Gamma) := \bigoplus_{g \in \mathcal{T}} \mathsf{H}^*(Y^g/C_{\Gamma}(g);\mathbb{Q}).$$

イロト イポト イヨト イヨト

Dimensions of Chen/Ruan orbifold cohomology

Theorem (R.)

$$\mathsf{H}^{d}_{orb}\left(\mathcal{H}//PSL_{2}(\mathcal{O}_{-m})\right) \cong \begin{cases} \mathbb{Q}, & d = 0\\ \mathbb{Q}^{\beta_{1}}, & d = 1\\ \mathbb{Q}^{\beta_{1}-1+\lambda_{4}+2\lambda_{6}-\lambda_{6}^{*}}, & d = 2\\ \mathbb{Q}^{\lambda_{4}-\lambda_{4}^{*}+2\lambda_{6}-\lambda_{6}^{*}}, & d = 3\\ 0 & \text{otherwise.} \end{cases}$$

Alexander D. Rahm Bianchi group calculations in PARI/GP

<ロト <回ト < 注ト < 注ト -

E

SQA

Let $\Gamma := \operatorname{SL}_2(\mathcal{O}_{-m})$. The space $\operatorname{H}^1_{\operatorname{cusp}}(\Gamma; E_{k,k})$ is isomorphic to the space of weight k + 2 cuspidal automorphic forms of Γ over $\mathbb{Q}(\sqrt{-m})$.

Discovered cases where there are genuine classes, where D is the discriminant of $\mathbb{Q}(\sqrt{-m})$.

D	7	11	71	87	91	155	199	223	231	339
k	12	10	1	2	6	4	1	0	4	1
dim	2	2	2	2	2	2	4	2	2	2

D	344	407	408	408	408	415	435	435	435	435
k	1	0	2	5	8	0	2	5	8	11
dim	2	2	2	2	2	2	2	2	2	2

D	455	483	571	571	643	760	1003	1003	1051	
k	0	1	0	1	0	2	0	1	0	
dim	2	2	2	2	2	2	2	2	2	

ヘロア ヘロア ヘビア ヘビア

Let Γ be a finite index subgroup in a Bianchi group. Consider the Borel–Serre compactification $\Gamma \setminus \widehat{\mathcal{H}}$ of the orbit space $\Gamma \setminus \mathcal{H}$. Its boundary $\partial(\Gamma \setminus \widehat{\mathcal{H}})$ consists of a 2-torus at each cusp *s*. Consider the map α induced on homology when attaching the boundary $\partial(\Gamma \setminus \widehat{\mathcal{H}})$ into $\Gamma \setminus \widehat{\mathcal{H}}$.

Theorem (Serre, 1970)

Suppose that the coefficient module M is equipped with a non-degenerate Γ -invariant \mathbb{C} -bilinear form. Then the rank of the map from $H^1(\Gamma; M)$ to the disjoint sum of the $H^1(\Gamma_s; M)$, induced by α , equals half of the rank of the disjoint sum of the $H^1(\Gamma_s; M)$.

Question (Serre 1970).

How can one determine the kernel of α (in degree 1) ?

・ 同 ト ・ ヨ ト ・ ヨ ト

R., "On a question of Serre", Note aux CRAS présentée par J.-P. Serre

Э

э

Thank you for your attention!

Alexander D. Rahm Bianchi group calculations in PARI/GP

イロト イポト イヨト

nar

Э