Computing modular Galois representations

An implementation of the finite field approach

Peter Bruin Universiteit Leiden

Atelier PARI/GP 2015 Bordeaux, 15 January 2015 Let X be a (smooth, complete, geometrically connected) curve of genus g over a finite field $k\,.$

Consider the Picard group

$$\operatorname{Pic}^{0} X = \{ \operatorname{divisors} \text{ of degree 0} \} / \{ \operatorname{principal divisors} \}$$

= $\{ \operatorname{line bundles} \text{ of degree 0} \} / \cong.$

This is also the group of k-rational points of the Jacobian variety J of X, which is an Abelian variety of dimension g over k.

Goal: compute efficiently in $\operatorname{Pic}^0 X = J(k)$ if g is large.

- Represent X , divisors on X and elements of $J(\boldsymbol{k})$
- Perform group operations in J(k)
- Pick random elements of X(k) and J(k)
- Evaluate the Frobenius automorphism of J(k') for finite extensions k'/k
- Evaluate Kummer maps $J(k)/nJ(k) \rightarrow J(k)[n]$
- Evaluate Frey–Rück (Tate) pairings $J(k)[n] \times J(k)/nJ(k) \rightarrow \mu_n(k)$

Using these operations, one can find a basis of J(k)[l], with $l \neq \operatorname{char} k$ a prime number, in time polynomial in g, $\log \# k$ and l, provided we know the zeta function of X.

Various approaches have been developed for computing in $\operatorname{Pic}^0 X$, based on different ways to represent X and divisors on it:

(1) as a (ramified) covering of \mathbf{P}^1 ;

(2) as a curve in \mathbf{P}^2 (necessarily singular for general X);

(3) by an embedding into a projective space of relatively high dimension.

We will only consider the third approach. There exist efficient algorithms, due in the first place to K. Khuri-Makdisi (2004) and extended in my thesis (2010).

Khuri-Makdisi's methods are tailored for modular curves. For example, if $n \ge 5$ the required representation of $X_1(n)$ over k can be obtained from a basis of q-expansions for the space of modular forms of weight 2 for $\Gamma_1(n)$ over k. Following Khuri-Makdisi, we choose a line bundle $\mathcal L$ on X with

 $\deg \mathcal{L} \ge 2g + 1.$

Let $\Gamma(X, \mathcal{L})$ denote its space of global sections. (For us, this is just a space of modular forms.)

Besides $\Gamma(X, \mathcal{L})$, we store the spaces $\Gamma(X, \mathcal{L}^i)$ for $1 \leq i \leq 7$ and the multiplication maps between them.

This gives a representation of X in terms of linear algebra.

Remark: We never need to write down equations (although they are implicit in the data and can be extracted if needed).

We represent points on X by hyperplanes in $\Gamma(X,\mathcal{L})$: to $x\in X$ we associate the subspace

$$V_x = \{ f \in \Gamma(X, \mathcal{L}) \mid f(x) = 0 \} \subset \Gamma(X, \mathcal{L}).$$

This construction gives a projective embedding

$$X \rightarrowtail \mathbf{P}\Gamma(X, \mathcal{L})$$
$$x \mapsto V_x.$$

Remark: after choosing a basis (f_0, \ldots, f_n) of $\Gamma(X, \mathcal{L})$, this embedding looks like

$$X \rightarrow \mathbf{P}_k^n$$

 $x \mapsto (f_0(x) : f_1(x) : \ldots : f_n(x)).$

However, we prefer to represent x by the hyperplane $V_x \subset \Gamma(X, \mathcal{L})$ rather than by a vector.

Similarly, we represent effective divisors D on X by subspaces of the form

$$\begin{split} V_D^i &= \Gamma(X, \mathcal{L}^i(-D)) \\ &= \{ f \in \Gamma(X, \mathcal{L}^i) \mid f \text{ vanishes on } D \} \end{split}$$

for i large enough such that $\deg \mathcal{L}^i(-D) \geq 2g+1$.

Remark: This comes down to embedding the *d*-th symmetric power $\operatorname{Sym}^d X$ (variety of effective divisors of degree *d*) into the Grassmannian variety of subspaces of codimension *d* in $\Gamma(X, \mathcal{L}^i)$:

$$\operatorname{Sym}^d X \to \operatorname{Gr}^d \Gamma(X, \mathcal{L}^i).$$

Khuri-Makdisi's algorithms are based on two fundamental results:

Lemma (multiplication): We can compute V_{D+E}^{i+j} from V_D^i and V_E^j by

$$V_{D+E}^{i+j} = V_D^i \cdot V_E^j$$

= span{ $vw \mid v \in V_D^i, w \in V_E^j$ } $\subset \Gamma(X, \mathcal{L}^{i+j})$

Lemma (division): We can compute V_D^i from V_{D+E}^{i+j} and V_E^j by

$$V_D^i = V_{D+E}^{i+j} \div V_E^j$$

= { $v \in \Gamma(X, \mathcal{L}^i) \mid vV_E^j \subseteq V_{D+E}^{i+j}$ }.

These allow us to add and subtract divisors and to test for linear equivalence.

Write

 $d = \deg \mathcal{L} \quad (\geq 2g + 1).$

Elements of J(k) are represented by effective divisors of degree d as follows:

 $\{\text{effective divisors of degree } d \text{ on } X\} \rightarrow J(k)$

 $D \mapsto \text{isomorphism class of } \mathcal{L}(-D).$

Addition and negation in J can be built up from $0 \in J(k)$ and the operation

addflip: $(x, y) \mapsto -x - y$.

Let $x, y \in J(k)$ be represented by effective divisors D, E. Then -x-y is represented by any effective divisor F such that $\mathcal{L}^3(-D-E-F) \cong \mathcal{O}_X$.

We would like to pick uniformly random elements from the finite sets X(k) and J(k).

Algorithm: Choose a uniformly random hyperplane H in $\mathbf{P}\Gamma(X, \mathcal{L})$. Compute the set $\{x_1, \ldots, x_r\}$ of rational points in $H \cap X$. With probability $r/\deg \mathcal{L}$, pick one of the x_i ; else start over.

Using a similar approach, we can pick uniformly random prime divisors on X.

Uniformly random effective divisors of a given degree m can be built up from prime divisors as follows. First select the "decomposition type" (degrees and multiplicities of prime divisors) of a uniformly random effective divisor of degree m using the zeta function of X. Then pick a uniformly random such divisor having this decomposition type.

If k' is a finite extension of k, we can compute the Frobenius map

 $F: J(k') \xrightarrow{\sim} J(k')$

by applying the #k-th power map on matrix entries with respect to k-bases.

If n is coprime to $\operatorname{char} k$ and J[n] is k -rational, we can compute the Kummer isomorphism

$$K: J(k)/nJ(k) \xrightarrow{\sim} J(k)[n]$$

coming from Galois cohomology of $0 \to J[n] \to J \xrightarrow{n} J \to 0$. Under the weaker assumption that k^{\times} contains the *n*-th roots of unity, we can compute the Frey–Rück (Tate) pairing

$$,]_n: J(k)/nJ(k) \times J(k)[n] \to \mu_n(k).$$

(Based in part on work of Couveignes, transferred to our setting.)

Let f be a normalised Hecke eigenform, let K be the number field generated by the coefficients of f, let λ be a finite place of K with residue field \mathbf{F}_{λ} . There are associated semi-simple Galois representations

$$\rho_{f,\lambda} : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(K_{\lambda}),$$
 $\bar{\rho}_{f,\lambda} : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\mathbf{F}_{\lambda}).$

We want to compute $\bar{\rho}_{f,\lambda}$ in the sense of giving a finite Galois extension L/\mathbf{Q} together with an embedding $\operatorname{Gal}(L/\mathbf{Q}) \rightarrow \operatorname{GL}_2(\mathbf{F}_{\lambda})$.

If $\bar{\rho}_{f,\lambda}$ is irreducible, then after twisting it occurs in $J_1(n)[l](\overline{\mathbf{Q}})$ for a suitable n, where $l = \operatorname{char} \lambda$ and $J_1(n)$ is the Jacobian of $X_1(n)$. This allows us to reduce the problem of computing $\bar{\rho}_{f,\lambda}$ as follows: given a maximal ideal \mathfrak{m} of the Hecke algebra acting on $J_1(n)$, with residue field \mathbf{F} , compute $J_1(n)[\mathfrak{m}]$.

(Project of Couveignes, Edixhoven et al.; "Schoof-like" algorithm.)

We choose a suitable embedding of ${\bf Q}$ -schemes

$$\iota: \mathrm{J}_1(n)[\mathfrak{m}] \longrightarrow \mathbf{A}^1_{\mathbf{Q}}.$$

Then $\operatorname{im} \iota$ is defined by a polynomial over \mathbf{Q} ; the induced \mathbf{F} -vector space scheme structure on $\operatorname{im} \iota$ is also given by polynomials over \mathbf{Q} .

Strategy for computing $J_1(n)[\mathfrak{m}]$: find these polynomials either numerically over \mathbf{C} or modulo p for sufficiently many small prime numbers p, and then reconstruct $\operatorname{im} \iota$ over \mathbf{Q} .

Remark: to know how much precision/how many p we need to ensure correctness, one needs a bound on the heights of the coefficients of the polynomials. Such a bound can be derived (with a lot of work) if one chooses ι carefully. The program (ca. 5700 lines of C code using the PARI library) consists of four modules:

- libpari-extra various utility functions: linear algebra, finite algebras, extensions of finite fields (small characteristic, i.e. Fl and Flxq)
- modular a toy implementation of modular symbols. Hopefully this will soon be switched to the new PARI ms* functions (main new ingredient needed: modular symbols for $\Gamma_1(n)$).
- jacobian general curves over finite fields, Jacobians, operations on them (using Khuri-Makdisi's algorithmic representation)
- modgalrep modular curves and Jacobians; Galois representations

Linear algebra (over finite fields) is currently the main bottleneck.