Spaces of Modular Symbols

Karim Belabas, Bernadette Perrin-Riou after Pollack and Stevens

Modular forms

Let $G \subset \operatorname{PSL}(2, \mathbb{Z})$ be a subgroup of finite index, and V be a right G-module. We are interested in the cohomology of the modular curve $X(G)$ with coefficients in V, more precisely in $H_{c}^{1}(X(G), V)$, as a Hecke-module.

Modular forms

Let $G \subset \operatorname{PSL}(2, \mathbb{Z})$ be a subgroup of finite index, and V be a right G-module. We are interested in the cohomology of the modular curve $X(G)$ with coefficients in V, more precisely in $H_{c}^{1}(X(G), V)$, as a Hecke-module.

Standard example: $G=\Gamma_{0}(N), V=\operatorname{Sym}^{k-2} \mathbb{C}^{2}$ (Shimura),

$$
(P \mid \gamma)(X, Y)=P(d X-c Y,-b X+a Y), \quad P \in V
$$

We recover classical \mathbb{C}-vector spaces of holomorphic modular forms for G :

$$
H_{c}^{1}(X(G), V) \simeq S_{k}(G) \oplus S_{k}(G) \oplus E_{k}(G)
$$

Another interesting example

Let Γ be a congruence subgroup of level prime to p and $G=\Gamma \cap \Gamma_{0}(p)$; let $V=\mathcal{D}_{k}\left(\mathbb{Z}_{p}\right)=: \mathcal{D}$, the space of locally analytic p-adic distributions on \mathbb{Z}_{p}, with weight $k-2$ action of G. This specializes via p-adic periods $\rho_{k}: \mathcal{D} \rightarrow \operatorname{Sym}^{k-2} \mathbb{Q}_{p}^{2}$ via

$$
\rho_{k}: \mu \mapsto \int(Y-t X)^{k-2} d \mu(t)
$$

This space \mathcal{D} contains the p-adic L-functions μ_{f} associated to normalized eigenforms $f \in S_{k}(\Gamma)$, and satisfying interpolation properties relating $\mu_{f}\left(t^{j} \cdot \chi\right)$ and special values $L\left(f, \chi^{-1}, j+1\right)$, where χ is of finite order on \mathbb{Z}_{p}^{\times}.

This allows to define specializations

$$
\operatorname{Symb}_{G}(\mathcal{D}) \rightarrow \operatorname{Symb}_{G}\left(\operatorname{Sym}^{k-2} \mathbb{Q}_{p}^{2}\right)
$$

The target of this map is finite dimensional while the source has infinite dimension. Nevertheless, by restricting to natural subspaces, Pollack and Stevens obtain a Hecke-equivariant isomorphism.

Modular symbols

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Modular symbols

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Let $\Delta_{0}:=\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$, generated by the divisors $[\beta]-[\alpha]$, which we denote by $\{\alpha, \beta\}$ and see as a path through the completed upper half plane $\overline{\mathcal{H}}$ linking the two cusps $\alpha \rightarrow \beta$. This is a left $G L(2, \mathbb{Q})$-module via fractional linear transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot[(u: v)]:=[(a u+b v: c u+d v)] .
$$

Modular symbols

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Let $\Delta_{0}:=\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$, generated by the divisors $[\beta]-[\alpha]$, which we denote by $\{\alpha, \beta\}$ and see as a path through the completed upper half plane $\overline{\mathcal{H}}$ linking the two cusps $\alpha \rightarrow \beta$. This is a left $\mathrm{GL}(2, \mathbb{Q})$-module via fractional linear transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot[(u: v)]:=[(a u+b v: c u+d v)] .
$$

$\operatorname{Hom}\left(\Delta_{0}, V\right)$ becomes a right G-module via

$$
(\phi \mid \gamma)(D):=\phi(\gamma \cdot D) \mid \gamma
$$

Modular symbols

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Let $\Delta_{0}:=\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$, generated by the divisors $[\beta]-[\alpha]$, which we denote by $\{\alpha, \beta\}$ and see as a path through the completed upper half plane $\overline{\mathcal{H}}$ linking the two cusps $\alpha \rightarrow \beta$. This is a left $\mathrm{GL}(2, \mathbb{Q})$-module via fractional linear transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot[(u: v)]:=[(a u+b v: c u+d v)] .
$$

$\operatorname{Hom}\left(\Delta_{0}, V\right)$ becomes a right G-module via

$$
(\phi \mid \gamma)(D):=\phi(\gamma \cdot D) \mid \gamma
$$

Finally

$$
\operatorname{Symb}_{G}(V):=\operatorname{Hom}_{G}\left(\Delta_{0}, V\right), \quad \phi \mid \gamma=\phi, \forall \phi \in G .
$$

(V-valued modular symbols on G)

Theorems

Theorem (Ash-Stevens). Provided that the orders of torsion elements of Γ act invertibly on V (e.g. if V is a vector space), we have a canonical isomorphism

$$
\operatorname{Symb}_{G}(V) \simeq H_{c}^{1}(X(G), V) .
$$

Assume V also allows a right action by $\operatorname{GL}(2, \mathbb{Q})$, then we can define a Hecke action on $\operatorname{Symb}_{G}(V)$. If ℓ is prime then T_{ℓ} is given by the double coset $G\left(\begin{array}{l}10 \\ 0 \\ 0\end{array}\right) G$. E.g. if $G=\Gamma_{0}(N)$ and $\ell \nmid N$, then

$$
\left.\phi\left|T_{\ell}=\phi\right|\left(\begin{array}{ll}
\ell & 0 \\
0 & 1
\end{array}\right)+\sum_{a=0}^{\ell-1} \phi \right\rvert\,\left(\begin{array}{cc}
1 & a \\
0 & \ell
\end{array}\right) .
$$

If $\sigma:=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ normalizes G, then it acts as an involution on $\operatorname{Symb}_{G}(V)$; if 2 acts invertibly on V, this yields the expected decomposition

$$
\operatorname{Symb}_{G}(V) \simeq \operatorname{Symb}_{G}(V)^{+} \oplus \operatorname{Symb}_{G}(V)^{-}
$$

into eigenspaces for this action.

Computation ?

Let $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ and $B=[\Gamma: G]$. Assume that

- $G \backslash \operatorname{PSL}(2, \mathbb{Z})$ can be enumerated in time $\widetilde{O}([\Gamma: G])$, with representatives of size $O(\log B)$.
- equivalence $\gamma_{1} \sim_{G} \gamma_{2}$, together with $\gamma \in G$ realizing it, is tested in time $\mathcal{O}(\log B)^{C}$ if $\left\|\gamma_{j}\right\|=O(B)$,

Computation ?

Let $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ and $B=[\Gamma: G]$. Assume that

- $G \backslash \operatorname{PSL}(2, \mathbb{Z})$ can be enumerated in time $\widetilde{O}([\Gamma: G])$, with representatives of size $O(\log B)$.
- equivalence $\gamma_{1} \sim_{G} \gamma_{2}$, together with $\gamma \in G$ realizing it, is tested in time $\mathcal{O}(\log B)^{C}$ if

$$
\left\|\gamma_{j}\right\|=O(B)
$$

Then the structure of Δ_{0} as a G-module is computed in time $\widetilde{O}(B)$, by writing down a nice fundamental domain for G (connected boundary, all edges are unimodular paths):

- minimal system of generators $\left(g_{i}\right), i \leqslant n, g_{n}=\{0, \infty\}$.
- relations explicitly written down (without computation),
- solve discrete logs: given a path p, find γ_{i} in $\mathbb{Z}[G]$ such that $p=\sum_{i} \gamma_{i} \cdot g_{i}$.

Computation ?

Among the n generators g_{i}, we get

- one relation for each conjugacy class of 2-torsion elements in $\mathrm{G}:\left(1+\gamma_{i}\right) \cdot g_{i}=0$, $1 \leqslant i \leqslant s$
- one for each pairs of conjugacy classes of 3 -torsion elements: $\left(1+\gamma_{i}+\gamma_{i}^{2}\right) \cdot g_{i}=0$, $s+1 \leqslant i \leqslant s+r$.
- and one "boundary relation" (walk around the fundamental domain and come back to starting point).

These generate all relations.
Corollary . Given G a finite index subgroup and V a right G-module. Choose any $n-1$ elements $v_{i} \in V$, compatible with the torsion relations when $i \leqslant s+r$ (e.g. $v_{i}\left(1+\gamma_{i}\right)=0$, i.e restrict v_{i} to an eigenspace $\left.V_{i} \subset V\right)$. Solve for v_{n} so that the boundary relation is satisfied. Then $\phi\left(g_{i}\right)=v_{i}$ defines a modular symbol ϕ, and all modular symbols arise in this way.

Implementation in libpari

Adapted from the SHP package by Robert Pollack. Currently only for $G=\Gamma_{0}$ and $V=\operatorname{Sym}^{k-2} \mathbb{Q}^{2}$.

- structure of Δ_{0} as a G-module,
\int explicit \mathbb{Q}-basis for $\operatorname{Symb}_{G}(V)$, dimension $d \approx k N / 6$,
$\bigcirc \sigma \in M_{d}(\mathbb{Q}) \Rightarrow \operatorname{Symb}_{G}(V)^{ \pm}$,
- Hecke operators $T_{\ell}(\ell \nmid N)$ and $U_{\ell}(\ell \mid N)$,
- Eisenstein subspace E of $\operatorname{Symb}_{G}(V)^{ \pm}(\mathbb{Q}$-basis),
- Cuspidal subspace S of $\operatorname{Symb}_{G}(V)^{ \pm}$: Hecke stable supplement of E, such that eigenvalues don't mix, i.e. $\operatorname{gcd}\left(\operatorname{char}\left(T_{p} \mid S\right), \operatorname{char}\left(T_{p} \mid E\right)\right)=1$,
- Degeneracy maps $\operatorname{Symb}_{\Gamma_{0}(N / p)}(V) \rightarrow \operatorname{Symb}_{\Gamma_{0}(N)}(V)$, whose image give $S^{\text {old }}$. Restrict to S and compute a Hecke-stable supplement $\Rightarrow S^{\text {new }}$,
- Decomposition of $S^{\text {new }}$ into simple subspaces.

Implementation in libpari

- Cut out a modular symbol with given system of Hecke-eigenvalues
$\Rightarrow E / \mathbb{Q} \rightarrow \phi_{E} \in \operatorname{Symb}_{\Gamma_{0}\left(N_{E}\right)}(\mathbb{Q})$.

