Spaces of Modular Symbols

Karim Belabas, Bernadette Perrin-Riou after Pollack and Stevens

Modular forms

Let $G \subset PSL(2,\mathbb{Z})$ be a subgroup of finite index, and V be a right G-module. We are interested in the cohomology of the modular curve X(G) with coefficients in V, more precisely in $H^1_c(X(G), V)$, as a Hecke-module.

Modular forms

Let $G \subset PSL(2,\mathbb{Z})$ be a subgroup of finite index, and V be a right G-module. We are interested in the cohomology of the modular curve X(G) with coefficients in V, more precisely in $H^1_c(X(G), V)$, as a Hecke-module.

Standard example: $G = \Gamma_0(N)$, $V = \operatorname{Sym}^{k-2} \mathbb{C}^2$ (Shimura),

$$(P \mid \gamma)(X, Y) = P(dX - cY, -bX + aY), \quad P \in V.$$

We recover classical \mathbb{C} -vector spaces of holomorphic modular forms for G:

 $H^1_c(X(G), V) \simeq S_k(G) \oplus S_k(G) \oplus E_k(G)$

Another interesting example

Let Γ be a congruence subgroup of level prime to p and $G = \Gamma \cap \Gamma_0(p)$; let $V = \mathcal{D}_k(\mathbb{Z}_p) =: \mathcal{D}$, the space of locally analytic p-adic distributions on \mathbb{Z}_p , with weight k - 2action of G. This specializes via p-adic periods $\rho_k : \mathcal{D} \to \operatorname{Sym}^{k-2} \mathbb{Q}_p^2$ via

$$\rho_k \colon \mu \mapsto \int (Y - tX)^{k-2} d\mu(t).$$

This space \mathcal{D} contains the *p*-adic *L*-functions μ_f associated to normalized eigenforms $f \in S_k(\Gamma)$, and satisfying interpolation properties relating $\mu_f(t^j \cdot \chi)$ and special values $L(f, \chi^{-1}, j+1)$, where χ is of finite order on \mathbb{Z}_p^{\times} .

This allows to define specializations

$$\operatorname{Symb}_{G}(\mathcal{D}) \to \operatorname{Symb}_{G}(\operatorname{Sym}^{k-2} \mathbb{Q}_{p}^{2})$$

The target of this map is finite dimensional while the source has infinite dimension. Nevertheless, by restricting to natural subspaces, Pollack and Stevens obtain a Hecke-equivariant isomorphism.

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Let $\Delta_0 := \text{Div}^0(\mathbb{P}^1(\mathbb{Q}))$, generated by the divisors $[\beta] - [\alpha]$, which we denote by $\{\alpha, \beta\}$ and see as a path through the completed upper half plane $\overline{\mathcal{H}}$ linking the two cusps $\alpha \to \beta$. This is a left $\text{GL}(2, \mathbb{Q})$ -module via fractional linear transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot [(u : v)] := [(au + bv : cu + dv)].$$

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Let $\Delta_0 := \text{Div}^0(\mathbb{P}^1(\mathbb{Q}))$, generated by the divisors $[\beta] - [\alpha]$, which we denote by $\{\alpha, \beta\}$ and see as a path through the completed upper half plane $\overline{\mathcal{H}}$ linking the two cusps $\alpha \to \beta$. This is a left $\text{GL}(2, \mathbb{Q})$ -module via fractional linear transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot [(u : v)] := [(au + bv : cu + dv)].$$

 $\operatorname{Hom}(\Delta_0,V)$ becomes a right G-module via

$$(\phi \mid \gamma)(D) := \phi(\gamma \cdot D) \mid \gamma$$

Modular symbols are a concrete realization of these cohomology classes, that afford a way to compute rather general spaces of "modular forms" (or rather systems of Hecke eigenvalues) using basic linear algebra.

Let $\Delta_0 := \text{Div}^0(\mathbb{P}^1(\mathbb{Q}))$, generated by the divisors $[\beta] - [\alpha]$, which we denote by $\{\alpha, \beta\}$ and see as a path through the completed upper half plane $\overline{\mathcal{H}}$ linking the two cusps $\alpha \to \beta$. This is a left $\text{GL}(2, \mathbb{Q})$ -module via fractional linear transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot [(u : v)] := [(au + bv : cu + dv)].$$

 $\operatorname{Hom}(\Delta_0,V)$ becomes a right G-module via

$$(\phi \mid \gamma)(D) := \phi(\gamma \cdot D) \mid \gamma$$

Finally

$$\operatorname{Symb}_{G}(V) := \operatorname{Hom}_{G}(\Delta_{0}, V), \quad \phi \mid \gamma = \phi, \forall \phi \in G.$$

(V-valued modular symbols on G)

Theorems

Theorem (Ash-Stevens). Provided that the orders of torsion elements of Γ act invertibly on V (e.g. if V is a vector space), we have a canonical isomorphism $\operatorname{Symb}_G(V) \simeq H^1_c(X(G), V).$

Assume V also allows a right action by $\operatorname{GL}(2, \mathbb{Q})$, then we can define a Hecke action on $\operatorname{Symb}_G(V)$. If ℓ is prime then T_ℓ is given by the double coset $G\begin{pmatrix} 1 & 0 \\ 0 & \ell \end{pmatrix} G$. E.g. if $G = \Gamma_0(N)$ and $\ell \nmid N$, then

$$\phi \mid T_{\ell} = \phi \mid \begin{pmatrix} \ell & 0 \\ 0 & 1 \end{pmatrix} + \sum_{a=0}^{\ell-1} \phi \mid \begin{pmatrix} 1 & a \\ 0 & \ell \end{pmatrix}.$$

If $\sigma := \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ normalizes G, then it acts as an involution on $Symb_G(V)$; if 2 acts invertibly on V, this yields the expected decomposition

$$\operatorname{Symb}_G(V) \simeq \operatorname{Symb}_G(V)^+ \oplus \operatorname{Symb}_G(V)^-$$

into eigenspaces for this action.

Computation ?

Let $\Gamma = \mathrm{PSL}(2,\mathbb{Z})$ and $B = [\Gamma : G]$. Assume that

- equivalence $\gamma_1 \sim_G \gamma_2$, together with $\gamma \in G$ realizing it, is tested in time $\mathcal{O}(\log B)^C$ if $\|\gamma_j\| = O(B)$,

Computation ?

Let $\Gamma = \mathrm{PSL}(2,\mathbb{Z})$ and $B = [\Gamma : G]$. Assume that

- $\textbf{P} \ \text{equivalence} \ \gamma_1 \sim_G \gamma_2, \text{together with} \ \gamma \in G \ \text{realizing it, is tested in time} \ \mathcal{O}(\log B)^C \ \text{if} \ \|\gamma_j\| = O(B),$

Then the structure of Δ_0 as a G-module is computed in time $\widetilde{O}(B)$, by writing down a nice fundamental domain for G (connected boundary, all edges are unimodular paths):

- ${} {oldsymbol{\mathscr{I}}}$ minimal system of generators (g_i) , $i\leqslant n$, $g_n=\{0,\infty\}$.
- relations explicitly written down (without computation),
- ${}$ solve discrete logs: given a path p, find γ_i in $\mathbb{Z}[G]$ such that $p=\sum_i \gamma_i\cdot g_i.$

Computation ?

Among the n generators g_i , we get

- one relation for each conjugacy class of 2-torsion elements in G: $(1 + \gamma_i) \cdot g_i = 0$,
 $1 \leq i \leq s$
- one for each pairs of conjugacy classes of 3-torsion elements: $(1 + \gamma_i + \gamma_i^2) \cdot g_i = 0$, $s + 1 \leq i \leq s + r$.
- and one "boundary relation" (walk around the fundamental domain and come back to starting point).

These generate all relations.

Corollary. Given G a finite index subgroup and V a right G-module. Choose any n-1 elements $v_i \in V$, compatible with the torsion relations when $i \leq s+r$ $(e.g. v_i(1 + \gamma_i) = 0$, i.e restrict v_i to an eigenspace $V_i \subset V$). Solve for v_n so that the boundary relation is satisfied. Then $\phi(g_i) = v_i$ defines a modular symbol ϕ , and all modular symbols arise in this way.

Implementation in libpari

Adapted from the SHP package by Robert Pollack. Currently only for $G = \Gamma_0$ and $V = \text{Sym}^{k-2} \mathbb{Q}^2$.

- \checkmark structure of Δ_0 as a G-module,
- \checkmark explicit \mathbb{Q} -basis for $\operatorname{Symb}_G(V)$, dimension $d \approx kN/6$,
- $\sigma \in M_d(\mathbb{Q}) \Rightarrow \operatorname{Symb}_G(V)^{\pm}$,
- \checkmark Hecke operators $T_\ell~(\ell \nmid N)$ and $U_\ell~(\ell \mid N),$
- Eisenstein subspace E of Symb_G(V)[±] (Q-basis),
- ✓ Cuspidal subspace S of Symb_G(V)[±]: Hecke stable supplement of E, such that eigenvalues don't mix, i.e. gcd(char(T_p | S), char(T_p | E)) = 1,
- Degeneracy maps Symb_{Γ0(N/p)}(V) → Symb_{Γ0(N)}(V), whose image give S^{old}.
 Restrict to S and compute a Hecke-stable supplement ⇒ S^{new},
- \checkmark Decomposition of S^{new} into simple subspaces.

Implementation in libpari

✓ Cut out a modular symbol with given system of Hecke-eigenvalues $\Rightarrow E/\mathbb{Q} \rightarrow \phi_E \in \text{Symb}_{\Gamma_0(N_E)}(\mathbb{Q}).$