Hilbert class polynomials, modular polynomials and isogenies

Hamish Ivey-Law hamish.ivey-law@inria.fr

¹LFANT team, INRIA Bordeaux Sud-Ouest

²Institut de Mathématiques de Bordeaux Université de Bordeaux 1

9th of January, 2014

Class polynomials Modular polynomials Isogenies

Introduction

- This talk is concerned with three main topics:
 - Hilbert class polynomials,
 - modular polynomials, and
 - isogenies between elliptic curves.
- For each of these topics we will
 - Briefly recall the main definitions and context.
 - Describe (in broad strokes) the algorithm(s) to compute them.
 - Describe (and solicit suggestions for) the PARI/GP interface to the implementation.
- The algorithms for computing Hilbert class polynomials and modular polynomials are due to **Andrew Sutherland** and his collaborators (including G. Bisson, R. Bröker, A. Enge, K. Lauter).
- The implementation hereby announced is still a *work in progress* that will be ready for release Real Soon Now[®].

• Let D < -4 be a quadratic discriminant satisfying the norm equation

$$4p = t^2 - v^2 D$$

for some integers t and v.

- Denote the order of discriminant D by \mathcal{O}_D .
- The *j*-invariant of the elliptic curve C/O_D is an algebraic integer whose minimal polynomial H_D(X) is the Hilbert class polynomial for the discriminant D.
- The degree h(D) of $H_D(X)$ is the class number of D.

How big is $H_D(X)$?

- Total size of $H_D(X)$ is $O(|D|^{1+\varepsilon})$ bits.
 - Degree is $O(|D|^{1/2} \log |D|)$
 - Let B be an upper bound for the height of the coefficients. Then $\log(B)$ is $O(|D|^{1/2} \log^2 |D|)$

D	h(D)	$h(D)\log(B)$
$10^{6} + 3$	105	113KB
$10^{8} + 3$	1702	33MB
$10^{10} + 3$	10538	2GB
$10^{12} + 3$	124568	265GB
$10^{14} + 3$	1425472	39TB

Class polynomial modulo a (small) split prime

When *p* satisfies the norm equation, $H_D(X)$ splits completely over \mathbb{F}_p and its roots are the *j*-invariants of the elliptic curves whose endomorphism rings are isomorphic to \mathcal{O}_D .

This allows us to compute $H_D(X)$ modulo such a *p*. Suppose $4p = t^2 - v^2D$ for some integers *t* and *v*. Then

- **()** Search for a curve E/\mathbb{F}_p whose trace is t.
- **2** Search for a curve E'/\mathbb{F}_p which is isogenous to E and has endomorphism ring \mathcal{O}_D . Its *j*-invariant j_0 gives a root of $H_D(X) \pmod{p}$.
- Enumerate all curves with endomorphism ring O_D using the action of cl(D), starting from j₀.

• Compute $H_D \pmod{p}$ as $H_D(X) = \prod_{\operatorname{End}(j) = \mathcal{O}_D} (X - j)$.

Class polynomial modulo an arbitrary integer

The complete algorithm to compute $H_D(X) \pmod{M}$.

- **(**) Select a set *S* of split primes such that $\prod_{p \in S} p > 4B$.
- 2 Compute a suitable presentation for cl(D).
- Initialise CRT.
- For each $p \in S$
 - Compute $H_D(X) \pmod{p}$ (uses the presentation of cl(D)).
 - **2** Update CRT for each coefficient of $H_D(X) \pmod{p}$.
- Deduce the coefficients of $H_D(X) \pmod{M}$.

Even when M is small one still has to compute $H_D \pmod{p}$ for sufficiently many primes p to determine H_D over \mathbb{Z} . Using the "explicit CRT" allows us to reduce the space required, but not the overall running time.

```
Proposed interface: classpoly(D, {M}, {g})
```

Complexity and performance

Assuming the GRH, to calculate $H_D(X)$ modulo an integer M, the algorithm

- uses $O(|D|^{1/2+\varepsilon} \log(M))$ space, and
- has expected running time $O(|D|^{1+\varepsilon})$.
- In practice (when finished) we expect typical running times of
 - less than 1 second for $D < 10^7$
 - $\bullet\,$ between 1 and 5 minutes for $D\sim 10^{10}$
 - Some choices of *D* may be worse (by a factor of 5 or 10) because of large minimal generators of cl(0).

Miscellaneous potentially useful functions

- Minimal polycyclic presentations
 - Small generators, not a basis
- Isogeny volcanoes
 - depth
 - navigation up/down
 - find level
 - path to surface/floor
- Modular curves $X_1(N)$ for $N \leq 50$.
- Find *j*-invariant of curve with given trace.
- Find *j*-invariant with given endomorphism ring
- Test for supersingularity (over arbitrary finite base field).

• The *modular polynomial* of level ℓ parameterises ℓ -isogenous pairs of elliptic curves over \mathbb{C} :

 $\Phi_{\ell}(j(E_1), j(E_2))$ if and only if E_1 and E_2 are ℓ -isogenous.

• This interpretation remains valid over any field of characteristic not dividing $\ell.$

How big is $\Phi_{\ell}(X, Y)$?

- Total size of $\Phi_{\ell}(X, Y)$ is $O(\ell^{3+\varepsilon})$ bits.
 - Degree in each variable is $\ell + 1$.

_

• Let B be an upper bound for the height of the coefficients. Then $\log(B)$ is $6\ell \log(\ell) + O(\ell)$.

ℓ	size (MB)
101	2.65
211	27.6
307	90.5
1009	3857.0

Class polynomials

Modular polynomials

Let ℓ be an odd prime, and let \mathbb{O} be an imaginary quadratic order of discriminant D with class number $h(D) \ge \ell + 2$. Let $p \equiv 1 \pmod{\ell}$ be a prime satisfying $4p = t^2 - v^2 \ell^2 D$ for some integers t and v with $\ell \nmid v$. Let $R = \mathbb{Z} + \ell \mathbb{O}$ be the order of index ℓ in \mathbb{O} . Then $\Phi_{\ell}(X, Y) \pmod{p}$ is computed as follows:

Definitions

Algorithm

- Find a root of H_{\odot} over \mathbb{F}_{p} .
- **2** Enumerate the roots j_i of H_{\odot} and identify ℓ -isogeny cycles.
- **③** For each j_i find an ℓ -isogenous j-invariant j'_i on the floor of the ℓ -volcano.
- **9** Enumerate the roots of H_R and identify ℓ^2 -isogeny cycles.
- O For each j_i compute Φ_ℓ(X, j_i) = ∏(X − j_k) where the product is over the neighbours of j_i in its ℓ-isogeny cycle together with the ℓ²-isogeny cycle containing j'_i.
- **(**) Interpolate $\Phi_{\ell} \in (\mathbb{F}_{p}[Y])[X]$ using the j_{i} and the polynomials $\Phi_{\ell}(X, j_{i})$.

Modular polynomial an arbitrary integer

Given an odd prime ℓ , a positive integer M,

- **(**) Find a suitable order \bigcirc of discriminant D where $h(D) \ge \ell + 2$.
- **2** Compute the class polynomial $H_{\mathbb{O}}$ over \mathbb{Z} .
- Select a sufficiently large set S of primes of the form 4p = t² l²v²D where l ∤ v, p ≡ 1 (mod l).
- Do CRT precomputation using S.
- **(3)** For each prime p in S,
 - Compute $\Phi_{\ell}(X, Y) \pmod{p}$ using the previous algorithm using \emptyset and H_{\emptyset} .
 - **2** Update CRT data using $\Phi_{\ell} \pmod{p}$.
- Finalise CRT computation and output Φ_{ℓ} in $(\mathbb{Z}/M\mathbb{Z})[X, Y]$.

Proposed interface: $modpoly(L, \{M\}, \{j0 = 'Y\}, \{g = 'x\})$

Complexity and performance

Assuming the GRH, to calculate $\Phi_{\ell}(X, Y)$ modulo an integer *M*, the algorithm

- uses $O(\ell^2(\log \ell)^2 + \ell^2 \log M)$ space, and
- has expected running time $O(\ell^3 (\log \ell)^3 \log \log \ell)$.
- In practice (when finished) we expect typical running times of
 - less than 3 seconds for $\ell < 100$
 - less than 60 seconds for $\ell < 300$
 - much better for certain other modular functions

- Let *E* be an elliptic curve and let G < E be a finite subgroup.
- There is a canonical isogeny $E \to E/G$.
- G can be specified as either
 - a point $P \in E$ that generates G, or
 - a polynomial h(x) whose roots are the x-coordinates of the elements of G.
- Converting from the first representation to the second is trivial (bascially just roots_to_pol()).
- Converting in the opposite direction obviously requires us to find a root of h(x).

- $\bullet\,$ Given the equation of E and the finite subgroup G, we would like to calculate
 - the equation of E/G, and
 - the polynomials giving $E \to E/G$.
- Formulæ for these calculations is given by Vélu when G is specified by a rational generator and by Kohel when G is specified by a polynomial.
- The former is faster but requires us to work over the field of definition of the generator; the latter is slower but we can work over the field of definition of the curve.

Proposed interface:

```
ellisog(E, G, {only_compute_image = 0})
ellapplyisog(isog, P)
ellcompositeisogeny(f, g)
kernel_poly_from_generator(E, P)
```

Class polynomials Modular polynomials Isogenies

Definitions Interface

Summary of new features

- Hilbert class polynomials
 - modulo M or over $\mathbb Z$
 - with various modular functions (*)
- Modular polynomials
 - modulo M or over $\mathbb Z$
 - pre-instantiated
 - non-prime level
 - with various modular functions (*)
- Isogenies
 - Codomain and isogeny from kernel (given as generator or polynomial)
 - Image of point under isogeny
 - Compose isogenies
 - Find isogenies between given curves (?)
- Navigating isogeny volcanoes
 - Depth, find level
 - Move up/down, path to surface/floor
 - Enumerate surface
 - Produce partial/complete (labelled) graph (?)

- Minimal polycyclic presentations
- Testing supersingularity
- Optimised equations for $X_1(N)$ for $N \leqslant 50$
- Find curves with given trace
- Find curve with given endo ring
- Explicit CRT (*)
- Calculate endomorphism ring of a given curve (*)
- Action of cl(0) on $Ell_{0}(\mathbb{F}_{p})$
- Enumerate kernel of $cl(\mathbb{Z} + NO) \rightarrow cl(O)$

 (\star) : something planned but not yet finished; (?): something that could be done if you want. Send suggestions to

hamish.ivey-law@inria.fr |