Hilbert class polynomials, modular polynomials and isogenies

Hamish Ivey-Law
hamish.ivey-law@inria.fr
${ }^{1}$ LFANT team, INRIA Bordeaux Sud-Ouest
${ }^{2}$ Institut de Mathématiques de Bordeaux
Université de Bordeaux 1

9th of January, 2014

Introduction

- This talk is concerned with three main topics:
- Hilbert class polynomials,
- modular polynomials, and
- isogenies between elliptic curves.
- For each of these topics we will
- Briefly recall the main definitions and context.
- Describe (in broad strokes) the algorithm(s) to compute them.
- Describe (and solicit suggestions for) the PARI/GP interface to the implementation.
- The algorithms for computing Hilbert class polynomials and modular polynomials are due to Andrew Sutherland and his collaborators (including G. Bisson, R. Bröker, A. Enge, K. Lauter).
- The implementation hereby announced is still a work in progress that will be ready for release Real Soon Now ${ }^{\circledR}$.

What is $H_{D}(X)$?

- Let $D<-4$ be a quadratic discriminant satisfying the norm equation

$$
4 p=t^{2}-v^{2} D
$$

for some integers t and v.

- Denote the order of discriminant D by \mathcal{O}_{D}.
- The j-invariant of the elliptic curve $\mathbb{C} / \mathcal{O}_{D}$ is an algebraic integer whose minimal polynomial $H_{D}(X)$ is the Hilbert class polynomial for the discriminant D.
- The degree $h(D)$ of $H_{D}(X)$ is the class number of D.

How big is $H_{D}(X)$?

- Total size of $H_{D}(X)$ is $O\left(|D|^{1+\varepsilon}\right)$ bits.
- Degree is $O\left(|D|^{1 / 2} \log |D|\right)$
- Let B be an upper bound for the height of the coefficients. Then $\log (B)$ is $O\left(|D|^{1 / 2} \log ^{2}|D|\right)$

D	$h(D)$	$h(D) \log (B)$
$10^{6}+3$	105	113 KB
$10^{8}+3$	1702	33 MB
$10^{10}+3$	10538	2 GB
$10^{12}+3$	124568	265 GB
$10^{14}+3$	1425472	39 TB

Class polynomial modulo a (small) split prime

When p satisfies the norm equation, $H_{D}(X)$ splits completely over \mathbb{F}_{p} and its roots are the j-invariants of the elliptic curves whose endomorphism rings are isomorphic to \mathcal{O}_{D}.

This allows us to compute $H_{D}(X)$ modulo such a p. Suppose $4 p=t^{2}-v^{2} D$ for some integers t and v. Then
(1) Search for a curve E / \mathbb{F}_{p} whose trace is t.
(2) Search for a curve $E^{\prime} / \mathbb{F}_{p}$ which is isogenous to E and has endomorphism ring \mathcal{O}_{D}. Its j-invariant $j 0$ gives a root of $H_{D}(X)(\bmod p)$.
(3) Enumerate all curves with endomorphism ring \mathcal{O}_{D} using the action of $\mathrm{cl}(D)$, starting from j_{0}.
(9) Compute $H_{D}(\bmod p)$ as $H_{D}(X)=\prod_{\operatorname{End}(j)=\mathcal{O}_{D}}(X-j)$.

Class polynomial modulo an arbitrary integer

The complete algorithm to compute $H_{D}(X)(\bmod M)$.
(1) Select a set S of split primes such that $\prod_{p \in S} p>4 B$.
(2) Compute a suitable presentation for $\mathrm{cl}(D)$.
(3) Initialise CRT.
(9) For each $p \in S$
(1) Compute $H_{D}(X)(\bmod p)$ (uses the presentation of $\mathrm{cl}(D)$).
(2) Update CRT for each coefficient of $H_{D}(X)(\bmod p)$.
(5) Deduce the coefficients of $H_{D}(X)(\bmod M)$.

Even when M is small one still has to compute $H_{D}(\bmod p)$ for sufficiently many primes p to determine H_{D} over \mathbb{Z}. Using the "explicit CRT" allows us to reduce the space required, but not the overall running time.

Proposed interface: classpoly(D, \{M\}, \{g\})

Complexity and performance

Assuming the GRH, to calculate $H_{D}(X)$ modulo an integer M, the algorithm

- uses $O\left(|D|^{1 / 2+\varepsilon} \log (M)\right)$ space, and
- has expected running time $O\left(|D|^{1+\varepsilon}\right)$.

In practice (when finished) we expect typical running times of

- less than 1 second for $D<10^{7}$
- between 1 and 5 minutes for $D \sim 10^{10}$
- Some choices of D may be worse (by a factor of 5 or 10) because of large minimal generators of $\mathrm{cl}(\mathcal{O})$.

Miscellaneous potentially useful functions

- Minimal polycyclic presentations
- Small generators, not a basis
- Isogeny volcanoes
- depth
- navigation up/down
- find level
- path to surface/floor
- Modular curves $X_{1}(N)$ for $N \leqslant 50$.
- Find j-invariant of curve with given trace.
- Find j-invariant with given endomorphism ring
- Test for supersingularity (over arbitrary finite base field).

What is $\Phi_{\ell}(X, Y)$?

- The modular polynomial of level ℓ parameterises ℓ-isogenous pairs of elliptic curves over \mathbb{C} :

$$
\Phi_{\ell}\left(j\left(E_{1}\right), j\left(E_{2}\right)\right) \text { if and only if } E_{1} \text { and } E_{2} \text { are } \ell \text {-isogenous. }
$$

- This interpretation remains valid over any field of characteristic not dividing ℓ.

How big is $\Phi_{\ell}(X, Y)$?

- Total size of $\Phi_{\ell}(X, Y)$ is $O\left(\ell^{3+\varepsilon}\right)$ bits.
- Degree in each variable is $\ell+1$.
- Let B be an upper bound for the height of the coefficients. Then $\log (B)$ is $6 \ell \log (\ell)+O(\ell)$.

ℓ	size (MB)
101	2.65
211	27.6
307	90.5
1009	3857.0

Modular polynomial modulo a (small) split prime

Let ℓ be an odd prime, and let \mathcal{O} be an imaginary quadratic order of discriminant D with class number $h(D) \geqslant \ell+2$. Let $p \equiv 1(\bmod \ell)$ be a prime satisfying $4 p=t^{2}-v^{2} \ell^{2} D$ for some integers t and v with $\ell \nmid v$. Let $R=\mathbb{Z}+\ell \mathcal{O}$ be the order of index ℓ in \mathcal{O}. Then $\Phi_{\ell}(X, Y)(\bmod p)$ is computed as follows:
(1) Find a root of $H_{\mathcal{O}}$ over \mathbb{F}_{p}.
(2) Enumerate the roots j_{i} of $H_{\mathcal{O}}$ and identify ℓ-isogeny cycles.
(3) For each j_{i} find an ℓ-isogenous j-invariant j_{i}^{\prime} on the floor of the ℓ-volcano.
(9) Enumerate the roots of H_{R} and identify ℓ^{2}-isogeny cycles.
(5) For each j_{i} compute $\Phi_{\ell}\left(X, j_{i}\right)=\prod\left(X-j_{k}\right)$ where the product is over the neighbours of j_{i} in its ℓ-isogeny cycle together with the ℓ^{2}-isogeny cycle containing j_{i}^{\prime}.
(6) Interpolate $\Phi_{\ell} \in\left(\mathbb{F}_{p}[Y]\right)[X]$ using the j_{i} and the polynomials $\Phi_{\ell}\left(X, j_{i}\right)$.

Modular polynomial an arbitrary integer

Given an odd prime ℓ, a positive integer M,
(1) Find a suitable order \mathcal{O} of discriminant D where $h(D) \geqslant \ell+2$.
(2) Compute the class polynomial $H_{\mathcal{O}}$ over \mathbb{Z}.
(3) Select a sufficiently large set S of primes of the form $4 p=t^{2}-\ell^{2} v^{2} D$ where $\ell \nmid v, p \equiv 1(\bmod \ell)$.
(4) Do CRT precomputation using S.
(5) For each prime p in S,
(1) Compute $\Phi_{\ell}(X, Y)(\bmod p)$ using the previous algorithm using \mathcal{O} and $H_{\mathcal{O}}$.
(2) Update CRT data using $\Phi_{\ell}(\bmod p)$.
(6) Finalise CRT computation and output Φ_{ℓ} in $(\mathbb{Z} / M \mathbb{Z})[X, Y]$.

Proposed interface: modpoly (L, $\{\mathrm{M}\},\{\mathrm{j} 0=\mathrm{Y}\},\{\mathrm{g}=\mathrm{x}\}$)

Complexity and performance

Assuming the GRH, to calculate $\Phi_{\ell}(X, Y)$ modulo an integer M, the algorithm

- uses $O\left(\ell^{2}(\log \ell)^{2}+\ell^{2} \log M\right)$ space, and
- has expected running time $O\left(\ell^{3}(\log \ell)^{3} \log \log \ell\right)$.

In practice (when finished) we expect typical running times of

- less than 3 seconds for $\ell<100$
- less than 60 seconds for $\ell<300$
- much better for certain other modular functions

Definitions

- Let E be an elliptic curve and let $G<E$ be a finite subgroup.
- There is a canonical isogeny $E \rightarrow E / G$.
- G can be specified as either
- a point $P \in E$ that generates G, or
- a polynomial $h(x)$ whose roots are the x-coordinates of the elements of G.
- Converting from the first representation to the second is trivial (bascially just roots_to_pol()).
- Converting in the opposite direction obviously requires us to find a root of $h(x)$.

Definitions

- Given the equation of E and the finite subgroup G, we would like to calculate
- the equation of E / G, and
- the polynomials giving $E \rightarrow E / G$.
- Formulæ for these calculations is given by Vélu when G is specified by a rational generator and by Kohel when G is specified by a polynomial.
- The former is faster but requires us to work over the field of definition of the generator; the latter is slower but we can work over the field of definition of the curve.

Interface

Proposed interface:

ellisog(E, G, \{only_compute_image = 0\})
ellapplyisog(isog, P)
ellcompositeisogeny (f, g)
kernel_poly_from_generator (E, P)

Summary of new features

- Hilbert class polynomials
- modulo M or over \mathbb{Z}
- with various modular functions (\star)
- Modular polynomials
- modulo M or over \mathbb{Z}
- pre-instantiated
- non-prime level
- with various modular functions (\star)
- Isogenies
- Codomain and isogeny from kernel (given as generator or polynomial)
- Image of point under isogeny
- Compose isogenies
- Find isogenies between given curves (?)
- Navigating isogeny volcanoes
- Depth, find level
- Move up/down, path to surface/floor
- Enumerate surface
- Produce partial/complete (labelled) graph (?)
- Minimal polycyclic presentations
- Testing supersingularity
- Optimised equations for $X_{1}(N)$ for $N \leqslant 50$
- Find curves with given trace
- Find curve with given endo ring
- Explicit CRT (\star)
- Calculate endomorphism ring of a given curve ($*$)
- Action of $\mathrm{cl}(\mathcal{O})$ on $\mathrm{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$
- Enumerate kernel of

$$
\mathrm{cl}(\mathbb{Z}+N \mathcal{O}) \rightarrow \mathrm{cl}(\mathcal{O})
$$

(\star) : something planned but not yet finished; (?): something that could be done if you want. Send suggestions to hamish.ivey-law@inria.fr !

