Introduction to PARI/GP (1/3)

Karim Belabas
http://pari.math.u-bordeaux.fr/

UNIVERSITE
PARIS-SUD 11 Explicit Methods in Number Theory (08-10/09/2004) — p. 1/11

Glossary

As the name suggests, PARI/GP is two-sided :

e PARI IS a library of C routines, oriented towards number-theoretic
applications. (Fast)

e gp IS an interpreter, giving access to PArI through a command-line shell.
It is programmable, in the scripting language GP. (Easy)

The gp2c compiler is a standalone tool, translating GP scripts to Par1 C code.
Transparent interface gp2c-run, loading optimized scripts into a new session.
(Fast + Easy, but supports a subset of the language.)

Explicit Methods in Number Theory (08-10/09/2004) — p. 2/11

What PAr1/GP does well

standard computations on integers and floats in arbitrary precision; (e.g.
factorization and primality testing for integers).

transcendental functions;

univariate polynomials (e.g. factorization over C, Q,, number fields) and
formal power series;

number fields and class field theory (strongest point) ;
elliptic curves;
linear algebra over Z, k| X|, or a field;

lattice reduction and standard applications (shortest vectors, recognizing
algebraic numbers, etc.).

Explicit Methods in Number Theory (08-10/09/2004) — p. 3/11

What PARI/GP supports

e numerical analysis (numerical integration, summing series, linear
algebra) ;

e graphism.

Explicit Methods in Number Theory (08-10/09/2004) — p. 4/11

What PAR1/GP does badly

e non-prime finite fields;
e Mmultivariate polynomials or power series;

e Sparse computations, asymptotically efficient algorithms.

Explicit Methods in Number Theory (08-10/09/2004) — p. 5/11

Conclusion

PARr1/GP is not a computer algebra system, although it includes many
facilities for symbolic computations.

Explicit Methods in Number Theory (08-10/09/2004) — p. 6/11

Avalilability

Free software (GPL), public development version and bug-tracking
database.

Requires between 6 to 15MB disk space, and 4MB RAM (i.e. no practical
restrictions).

Some architectures better supported (e.g Linux + gcc + ix86), but highly
portable (from PDA to mainframes)

The development version supports both the native multiprecision kernel
and GMP.

Explicit Methods in Number Theory (08-10/09/2004) — p. 7/11

Variables — Programming (1/4)

Assignment : x = 1
Instruction separator : ;
(at end of line ; prevents printing of results)

Variables are neither declared nor typed, although their value has a type. One
may use x prior to any assignment : it is then a degree 1 polynomial. On the
other hands, x[5] cannont be used before x is initialized to a vector type.

Explicit Methods in Number Theory (08-10/09/2004) — p. 8/11

t_INT, t_FRAC

t_COMPLEX, t_QUAD
t_REAL, t_PADIC
t_INTMOD, t_POLMOD
t_POL, t _RFRAC,

t_SER

t_QFI, t_QFR

t_VEC, t_COL, t_MAT
t_LIST, t_STR, t_VECSMALL

GP types — Programming (2/4)

Explicit Methods in Number Theory (08-10/09/2004) — p. 9/11

t_INT, t_FRAC (exact)
t_COMPLEX, t_QUAD (?7?)

t_REAL, t_PADIC (inexact)

GP types — Programming (2/4)

t_INTMOD, t_POLMOD (exact, modular)

t_POL, t_RFRAC,

t_SER (inexact)

t_QFI, t_QFR

t_VEC, t_COL, t_MAT
t_LIST, t_STR, t_VECSMALL

Explicit Methods in Number Theory (08-10/09/2004) — p. 9/11

Programming (3/4)

Whitespace ignored, but an executable statement = a single line. Executed as
soon as Enter IS pressed unless

e line is terminated by =, or

e line in a group enclosed between braces { }; group is executed as the
closing brace is found. (Braces are then removed from the input.)

For instance fun(x) =
{

+
IS equivalentto fun(x) = x*x

Explicit Methods in Number Theory (08-10/09/2004) — p. 10/11

Programming (4/4)

User function : returned value is the result of the last evaluated expression in
the function body. fun(x, y) = x * y \\standard

fun(x, y) = \\local variables
local(z = x*y) ; z"2

fun(x, y = 2) = x *x y \\default argument
Arguments are passed as parameters (copy made if mutable object).

Member function : different syntax, unigue argument, arguments passes as
variables. x.a = x[1]

Explicit Methods in Number Theory (08-10/09/2004) — p. 11/11

