Denis SIMON Université de Caen www.math.unicaen.fr/~simon

Reduction of indefinite quadratic forms and applications

WORKSHOP PARI/GP IHP, September 2004

The 3-dimensional case: the idea of Gauss

We want to solve Q(x) = 0, with $Q \in \mathcal{M}_3(\mathbb{Z})^{sym}$.

• Step 1, Minimization : build another quadratic equation Q'(y) = 0 with $\det Q' = -1$.

• Step 2, Reduction: find a basis, in which $Q' \simeq \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

• Step 3 : from a solution of Q'(y) = 0 , rebuild a solution of Q(x) = 0

Ingredients of the minimization

- Factorization of the det Q.
- Linear algebra $\mod p$.
- Square roots $\mod p$.

Gram-Schmidt orthogonalization

Notation: $\mathbf{b}_i \cdot \mathbf{b}_j := \mathbf{b}_i^t Q \mathbf{b}_j$. Start with a basis $\mathbf{b}_1, \dots, \mathbf{b}_n$.

Formulae: (defined by induction)

$$\mathbf{b}_i^* = \mathbf{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \mathbf{b}_j^*$$

with

$$\mu_{i,j} = \mathbf{b}_i \cdot \mathbf{b}_j^* / \mathbf{b}_j^* \cdot \mathbf{b}_j^*$$
.

The basis $\mathbf{b}_1^*, \ldots, \mathbf{b}_n^*$ is orthogonal.

LLL for definite quadratic forms

```
Algorithm: Let \frac{1}{4} < c < 1. Start with a basis \mathbf{b}_1, \ldots, \mathbf{b}_n
of \mathbb{Z}^n
  1- Set k = 2.
  2- Compute the \mathbf{b}_{i}^{*} and the \mu_{i,j} using Gram-Schmidt.
  3- for i = n, \dots, 1, for j = 1, \dots, i-1 set q = |\mu_{i,j}|,
\mathbf{b}_i = \mathbf{b}_i - q\mathbf{b}_j and \mu_{i,j} = \mu_{i,j} - q.
  4- If (\mathbf{b}_{k}^{*})^{2} + \mu_{k,k-1}^{2} (\mathbf{b}_{k-1}^{*})^{2} < c(\mathbf{b}_{k-1}^{*})^{2}, exchange \mathbf{b}_{k} and
\mathbf{b}_{k-1}, and set k = \max(k-1,2). Otherwise, set k = k+1.
  5- If k < n, go to step 2, otherwise, return the basis
(\mathbf{b}_i).
```

Bounds for the definite LLL

Theorem: Let $Q \in \mathcal{M}_n(\mathbb{Z})^{sym}$ with $\det Q \neq 0$. Let $\frac{1}{4} < c < 1$.

Apply LLL to Q, then:

it finishes (after a polynomial number of steps) with a reduced basis $\mathbf{b}_1, \dots, \mathbf{b}_n$ such that

$$|(\mathbf{b}_1)^2|^n \leqslant \gamma^{n(n-1)/2} |\det(Q)|,$$

where $\gamma = (c - \frac{1}{4})^{-1} > \frac{4}{3}$.

LLL for indefinite quadratic forms

```
Algorithm: Let \frac{1}{4} < c < 1. Start with a basis \mathbf{b}_1, \ldots, \mathbf{b}_n of \mathbb{Z}^n
1- Set k=2.
2- Compute the \mathbf{b}_i^* and the \mu_{i,j} using Gram-Schmidt.
```

- 3- for $i=n,\cdots,1$, for $j=1,\cdots,i-1$ set $q=\lfloor \mu_{i,j} \rceil$, $\mathbf{b}_i=\mathbf{b}_i-q\mathbf{b}_j$ and $\mu_{i,j}=\mu_{i,j}-q$.
- 4- If $|(\mathbf{b}_k^*)^2 + \mu_{k,k-1}^2(\mathbf{b}_{k-1}^*)^2| < c |(\mathbf{b}_{k-1}^*)^2|$, exchange \mathbf{b}_k and \mathbf{b}_{k-1} , and set $k = \max(k-1,2)$. Otherwise, set k = k+1.
- 5- If k < n, go to step 2, otherwise, return the basis (\mathbf{b}_i) .

Bounds for the indefinite LLL

Theorem: Let $Q \in \mathcal{M}_n(\mathbb{Z})^{sym}$ with det $Q \neq 0$. Let $\frac{1}{4} < c < 1$. Apply the modified LLL to Q, then:

• EITHER it finishes (after a polynomial number of steps) with a reduced basis $\mathbf{b}_1, \dots, \mathbf{b}_n$ such that

$$|(\mathbf{b}_1)^2|^n \leqslant \gamma^{n(n-1)/2} |\det(Q)|,$$

where $\gamma = (c - \frac{1}{4})^{-1} > \frac{4}{3}$.

If furthermore Q is indefinite, we have

$$1 \leqslant |(\mathbf{b}_1)^2|^n \leqslant \frac{3}{4} \gamma^{n(n-1)/2} |\det(Q)|$$
.

• OR it crashes ...

Bounds for the indefinite LLL

... because it has found a SOLUTION of $Q(\mathbf{x}) = 0$!!